成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

一款Python實用神器,5行Python代碼實現(xiàn)一鍵批量扣圖

今天給大家分享一款Python裝逼實用神器。

青神網(wǎng)站制作公司哪家好,找創(chuàng)新互聯(lián)建站!從網(wǎng)頁設(shè)計、網(wǎng)站建設(shè)、微信開發(fā)、APP開發(fā)、響應(yīng)式網(wǎng)站等網(wǎng)站項目制作,到程序開發(fā),運營維護。創(chuàng)新互聯(lián)建站自2013年起到現(xiàn)在10年的時間,我們擁有了豐富的建站經(jīng)驗和運維經(jīng)驗,來保證我們的工作的順利進行。專注于網(wǎng)站建設(shè)就選創(chuàng)新互聯(lián)建站。

在日常生活或者工作中,經(jīng)常會遇到想將某張照片中的人物摳出來,然后拼接到其他圖片上去。專業(yè)點的人可以使用 PhotoShop 的“魔棒”工具進行摳圖,非專業(yè)人士則使用各種美圖 APP 來實現(xiàn),但是這兩類方式畢竟處理能力有限,一次只能處理一張圖片,而且比較復雜的圖像可能耗時較久。那今天就來向大家展示第三種扣圖方式——用 Python代碼來實現(xiàn) 一鍵批量摳圖。

1. 準備工作- 安裝paddlepaddle

既然要裝逼,準備工作是少不了的。所謂“站在巨人的肩膀上,干起活來事半功倍”,我們這里的“巨人”就是 paddlepaddle 了,中文名稱叫“飛槳”,那么這個 paddlepaddle 是什么呢?

它是“源于產(chǎn)業(yè)實踐的開源深度學習平臺,致力于讓深度學習技術(shù)的創(chuàng)新與應(yīng)用更簡單”,直白點就是我?guī)湍銓崿F(xiàn)了深度學習底層框架,你只要有創(chuàng)意就可以在我平臺上運用少量簡單代碼輕松實現(xiàn)。它的官網(wǎng)是:https://www.paddlepaddle.org.cn/ 。

它的安裝比較簡單,官網(wǎng)首頁就有安裝指引,可以通過「安裝」菜單,查找到各個系統(tǒng)安裝詳細及注意事項,如下圖所示,我們這里根據(jù)官網(wǎng)的安裝指引,使用 pip 方式來安裝 CPU 版本。

本文以MacOS系統(tǒng)為例:

我們首先執(zhí)行以下命令安裝(推薦使用百度源)::

python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

或者:

python3 -m pip install paddlepaddle -i https://pypi.tuna.tsinghua.edu.cn/simple

從安裝過程中,可以看到在安裝paddlepaddle庫時,需要安裝如下依賴庫:

Installing collected packages: pathlib, click, joblib, regex, tqdm, nltk, gast, rarfile, pyyaml, funcsigs, paddlepaddle
  Running setup.py install for pathlib ... done
  Running setup.py install for regex ... done
  Running setup.py install for nltk ... done
  Running setup.py install for rarfile ... done
  Running setup.py install for pyyaml ... done
Successfully installed click-7.1.2 funcsigs-1.0.2 gast-0.3.3 joblib-0.14.1 nltk-3.5 paddlepaddle-1.8.0 pathlib-1.0.1 pyyaml-5.3.1 rarfile-3.1 regex-2020.5.7 tqdm-4.46.0

安裝成功后,我們在 python 環(huán)境中測試一下是否安裝成功(這個也是按照官網(wǎng)指引來做),我們切換到 python 環(huán)境,運行如下代碼:

?  ~ python3
Python 3.7.4 (default, Jul  9 2019, 18:15:00)
[Clang 10.0.0 (clang-1000.11.45.5)] on darwin
Type help, copyright, credits or license for more information.
>>> import paddle.fluid
>>> paddle.fluid.install_check.run_check()
Running Verify Fluid Program ...
Your Paddle Fluid works well on SINGLE GPU or CPU.
W0512 17:41:31.037240 2844976000 build_strategy.cc:170] fusion_group is not enabled for Windows/MacOS now, and only effective when running with CUDA GPU.
W0512 17:41:31.043959 2844976000 fuse_all_reduce_op_pass.cc:74] Find all_reduce operators: 2. To make the speed faster, some all_reduce ops are fused during training, after fusion, the number of all_reduce ops is 1.
Your Paddle Fluid works well on MUTIPLE GPU or CPU.
Your Paddle Fluid is installed successfully! Let\'s start deep Learning with Paddle Fluid now

如果能看到 Your Paddle Fluid is installed successfully 就表示安裝成功了。

2. 準備工作- 安裝paddlehub

要實現(xiàn)本文的一鍵批量扣圖需求,需要借助PaddleHub人像分割模型來實現(xiàn)。

PaddleHub 是基于 PaddlePaddle 開發(fā)的預(yù)訓練模型管理工具,可以借助預(yù)訓練模型更便捷地開展遷移學習工作,目前的預(yù)訓練模型涵蓋了圖像分類、目標檢測、詞法分析、語義模型、情感分析、視頻分類、圖像生成、圖像分割、文本審核、關(guān)鍵點檢測等主流模型。

PaddleHub官網(wǎng):

https://www.paddlepaddle.org.cn/hub

PaddleHub項目地址:

https://github.com/PaddlePaddle/PaddleHub

更多PaddleHub預(yù)訓練模型教程合集課程可見:

https://aistudio.baidu.com/aistudio/course/introduce/1070

介紹完了項目,接下來我們開始在線安裝 paddlehub :

pip install -i https://mirror.baidu.com/pypi/simple paddlehub

或者按指定版本安裝:

pip install paddlehub==1.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

安裝完成后,我們就可以開始運用了。

3. 一鍵扣圖代碼實現(xiàn)

我們的實現(xiàn)步驟很簡單:

導入模塊 加載模型 獲取圖片文件 調(diào)用模塊摳圖

其中扣圖功能主要采用PaddleHub DeepLabv3+模型deeplabv3p_xception65_humanseg

下面我們看具體扣圖代碼實現(xiàn)(demo.py):

import os
import paddlehub as hub

# 加載模型
humanseg = hub.Module(name=\'deeplabv3p_xception65_humanseg\')  
base_dir = os.path.abspath(os.path.dirname(__file__))

# 獲取當前文件目錄
path = os.path.join(base_dir, \'images/\')
# 獲取文件列表
files = [path + i for i in os.listdir(path)]  
print(files)
# 摳圖
results = humanseg.segmentation(data={\'image\': files})  
for result in results:
    print(result)

示例中,我將圖片放在代碼文件夾的同級目錄 images文件夾下,運行代碼后,輸出的摳圖圖片會自動放在代碼同級目錄的 humanseg_output 目錄下,文件名稱跟原圖片的名稱相同,但是文件格式是 png 。

其中示例 images 目錄下放了9張圖片,為了兼顧不同讀者喜好的口味,示例圖片中既包括了帥哥,也有美女哦,并且將他們縮略圖放大了,如下:

運行程序后,上述示例代碼運行結(jié)果如下所示。

運行成功后,在 humanseg_output 目錄下生成了9張圖片,同樣的,扣圖的結(jié)果如下所示:

我們可以看到程序?qū)⒚繌垐D片中的人物(可以是一個人,也可以是多個人)識別出來,并且摳出來成圖,背景是白色。雖然有些細節(jié)處還有些許瑕疵,但是看起來還算不錯。

4. 需要注意的坑

在運行示例代碼時,如果沒有單獨安裝模型deeplabv3p_xception65_humanseg,默認會自動在執(zhí)行前進行安裝。但安裝完成后,執(zhí)行結(jié)果并沒有生成扣圖結(jié)果及humanseg_output目錄,輸出結(jié)果類似如下所示:

正常情況下,在生成扣圖數(shù)據(jù),打印results時,應(yīng)該是類似如下結(jié)構(gòu)才對:

可以通過單獨安裝模型并指定安裝版本來解決。

hub install deeplabv3p_xception65_humanseg==1.0.0

具體原因沒有細究,默認自動安裝模型時,版本為1.2.0,猜測由于還是模型版本不兼容問題導致。

5. 總結(jié)

本文基于 paddlepaddle 平臺,利用PaddleHub DeepLabv3+模型(deeplabv3p_xception65_humanseg),使用簡單的五行代碼就實現(xiàn)了批量摳圖。有些讀者可能會想,上述示例中提供的代碼行數(shù)不止五行代碼吧,在上述示例中,真正實現(xiàn)扣圖的主代碼其實只需要下面五行:

humanseg = hub.Module(name=\'deeplabv3p_xception65_humanseg\')  
base_dir = os.path.abspath(os.path.dirname(__file__))
path = os.path.join(base_dir, \'images/\')
files = [path + i for i in os.listdir(path)]  
results = humanseg.segmentation(data={\'image\': files})  

利用PaddleHub DeepLabv3+模型 不僅可以實現(xiàn)一鍵扣圖,還可以進行圖片合成,視頻合成等。利用好它不僅解放了人的雙手和雙眼,而且為某些程序猿/程序媛的裝逼工具箱提供了一件寶器。下次如果碰到某個女生或者閨蜜在為摳圖發(fā)愁,別忘了掏出神器,贏得芳心哦!

paddlepaddle作為一款開源的深度學習平臺,本文介紹的扣圖訓練模型只是其中的冰山一角,實戰(zhàn)訓練預(yù)測模型種類還遠遠不止,更多的場景結(jié)合,讀者們可自行挖掘。

更多好文, 第一時間也會發(fā)布至公眾號「測試開發(fā)技術(shù)」(mikezhou_talk),歡迎關(guān)注!

網(wǎng)頁題目:一款Python實用神器,5行Python代碼實現(xiàn)一鍵批量扣圖
URL鏈接:http://jinyejixie.com/article48/chohhp.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供靜態(tài)網(wǎng)站微信公眾號、網(wǎng)站排名ChatGPT、電子商務(wù)、品牌網(wǎng)站建設(shè)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

成都定制網(wǎng)站網(wǎng)頁設(shè)計
宁陵县| 施秉县| 海兴县| 两当县| 扬中市| 克拉玛依市| 崇义县| 星座| 凤翔县| 临海市| 宝坻区| 神农架林区| 佛冈县| 襄垣县| 保靖县| 岢岚县| 宝丰县| 九龙县| 平安县| 安远县| 宜兰市| 泰安市| 石泉县| 特克斯县| 桂东县| 麻城市| 普安县| 香格里拉县| 石门县| 合江县| 永州市| 洞头县| 瓦房店市| 六枝特区| 刚察县| 泸溪县| 扬州市| 高雄市| 河北省| 兴安县| 闽清县|