成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

php十萬數(shù)據(jù)處理 php處理10萬級數(shù)據(jù)

如果用PHP賦值十萬個(gè)變量數(shù)組(比如讀取十萬條mysql數(shù)據(jù)來用),做為后臺管理腳本來運(yùn)行會(huì)不會(huì)太耗系統(tǒng)資

你說的寫文件是個(gè)思路。如果你只是要求某一個(gè)字段是唯一,可以把這個(gè)存在內(nèi)存中,每次進(jìn)行驗(yàn)證。然后把驗(yàn)證通過的數(shù)據(jù)寫入文件,最后在統(tǒng)一從文件中讀出來存入數(shù)據(jù)庫。

公司主營業(yè)務(wù):網(wǎng)站建設(shè)、網(wǎng)站設(shè)計(jì)、移動(dòng)網(wǎng)站開發(fā)等業(yè)務(wù)。幫助企業(yè)客戶真正實(shí)現(xiàn)互聯(lián)網(wǎng)宣傳,提高企業(yè)的競爭能力。創(chuàng)新互聯(lián)公司是一支青春激揚(yáng)、勤奮敬業(yè)、活力青春激揚(yáng)、勤奮敬業(yè)、活力澎湃、和諧高效的團(tuán)隊(duì)。公司秉承以“開放、自由、嚴(yán)謹(jǐn)、自律”為核心的企業(yè)文化,感謝他們對我們的高要求,感謝他們從不同領(lǐng)域給我們帶來的挑戰(zhàn),讓我們激情的團(tuán)隊(duì)有機(jī)會(huì)用頭腦與智慧不斷的給客戶帶來驚喜。創(chuàng)新互聯(lián)公司推出郊區(qū)免費(fèi)做網(wǎng)站回饋大家。

但是又會(huì)出現(xiàn)個(gè)問題。如果你是10萬條數(shù)據(jù)在文件里,你要是想用一個(gè)INSERT插入,那必須得先把這數(shù)據(jù)讀到內(nèi)存里,肯定也很慢,而且不穩(wěn)定。如果你逐條讀出插入,對數(shù)據(jù)庫也是個(gè)消耗。不過你可以把數(shù)據(jù)拆散,比如每1000條插一次。

php 處理上百萬條的數(shù)據(jù)庫如何提高處理查詢速度

1.對查詢進(jìn)行優(yōu)化,應(yīng)盡量避免全表掃描,首先應(yīng)考慮在 where 及 order by 涉及的列上建立索引。

2.應(yīng)盡量避免在 where 子句中對字段進(jìn)行 null 值判斷,否則將導(dǎo)致引擎放棄使用索引而進(jìn)行全表掃描,如:

select id from t where num is null

可以在num上設(shè)置默認(rèn)值0,確保表中num列沒有null值,然后這樣查詢:

select id from t where num=0

3.應(yīng)盡量避免在 where 子句中使用!=或操作符,否則將引擎放棄使用索引而進(jìn)行全表掃描。

4.應(yīng)盡量避免在 where 子句中使用 or 來連接條件,否則將導(dǎo)致引擎放棄使用索引而進(jìn)行全表掃描,如:

select id from t where num=10 or num=20

可以這樣查詢:

select id from t where num=10

union all

select id from t where num=20

5.in 和 not in 也要慎用,否則會(huì)導(dǎo)致全表掃描,如:

select id from t where num in(1,2,3)

對于連續(xù)的數(shù)值,能用 between 就不要用 in 了:

select id from t where num between 1 and 3

6.下面的查詢也將導(dǎo)致全表掃描:

select id from t where name like '%abc%'

若要提高效率,可以考慮全文檢索。

7.如果在 where 子句中使用參數(shù),也會(huì)導(dǎo)致全表掃描。因?yàn)镾QL只有在運(yùn)行時(shí)才會(huì)解析局部變量,但優(yōu)化程序不能將訪問計(jì)劃的選擇推遲到運(yùn)行時(shí);它必須在編譯時(shí)進(jìn)行選擇。然而,如果在編譯時(shí)建立訪問計(jì)劃,變量的值還是未知的,因而無法作為索引選擇的輸入項(xiàng)。如下面語句將進(jìn)行全表掃描:

select id from t where num=@num

可以改為強(qiáng)制查詢使用索引:

select id from t with(index(索引名)) where num=@num

8.應(yīng)盡量避免在 where 子句中對字段進(jìn)行表達(dá)式操作,這將導(dǎo)致引擎放棄使用索引而進(jìn)行全表掃描。如:

select id from t where num/2=100

應(yīng)改為:

select id from t where num=100*2

9.應(yīng)盡量避免在where子句中對字段進(jìn)行函數(shù)操作,這將導(dǎo)致引擎放棄使用索引而進(jìn)行全表掃描。如:

select id from t where substring(name,1,3)='abc'--name以abc開頭的id

select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30'生成的id

應(yīng)改為:

select id from t where name like 'abc%'

select id from t where createdate='2005-11-30' and createdate'2005-12-1'

10.不要在 where 子句中的“=”左邊進(jìn)行函數(shù)、算術(shù)運(yùn)算或其他表達(dá)式運(yùn)算,否則系統(tǒng)將可能無法正確使用索引。

11.在使用索引字段作為條件時(shí),如果該索引是復(fù)合索引,那么必須使用到該索引中的第一個(gè)字段作為條件時(shí)才能保證系統(tǒng)使用該索引,否則該索引將不會(huì)被使用,并且應(yīng)盡可能的讓字段順序與索引順序相一致。

12.不要寫一些沒有意義的查詢,如需要生成一個(gè)空表結(jié)構(gòu):

select col1,col2 into #t from t where 1=0

這類代碼不會(huì)返回任何結(jié)果集,但是會(huì)消耗系統(tǒng)資源的,應(yīng)改成這樣:

create table #t(...)

13.很多時(shí)候用 exists 代替 in 是一個(gè)好的選擇:

select num from a where num in(select num from b)

用下面的語句替換:

select num from a where exists(select 1 from b where num=a.num)

14.并不是所有索引對查詢都有效,SQL是根據(jù)表中數(shù)據(jù)來進(jìn)行查詢優(yōu)化的,當(dāng)索引列有大量數(shù)據(jù)重復(fù)時(shí),SQL查詢可能不會(huì)去利用索引,如一表中有字段sex,male、female幾乎各一半,那么即使在sex上建了索引也對查詢效率起不了作用。

15.索引并不是越多越好,索引固然可以提高相應(yīng)的 select 的效率,但同時(shí)也降低了 insert 及 update 的效率,因?yàn)?insert 或 update 時(shí)有可能會(huì)重建索引,所以怎樣建索引需要慎重考慮,視具體情況而定。一個(gè)表的索引數(shù)最好不要超過6個(gè),若太多則應(yīng)考慮一些不常使用到的列上建的索引是否有必要。

16.應(yīng)盡可能的避免更新 clustered 索引數(shù)據(jù)列,因?yàn)?clustered 索引數(shù)據(jù)列的順序就是表記錄的物理存儲順序,一旦該列值改變將導(dǎo)致整個(gè)表記錄的順序的調(diào)整,會(huì)耗費(fèi)相當(dāng)大的資源。若應(yīng)用系統(tǒng)需要頻繁更新 clustered 索引數(shù)據(jù)列,那么需要考慮是否應(yīng)將該索引建為 clustered 索引。

17.盡量使用數(shù)字型字段,若只含數(shù)值信息的字段盡量不要設(shè)計(jì)為字符型,這會(huì)降低查詢和連接的性能,并會(huì)增加存儲開銷。這是因?yàn)橐嬖谔幚聿樵兒瓦B接時(shí)會(huì)逐個(gè)比較字符串中每一個(gè)字符,而對于數(shù)字型而言只需要比較一次就夠了。

18.盡可能的使用 varchar/nvarchar 代替 char/nchar ,因?yàn)槭紫茸冮L字段存儲空間小,可以節(jié)省存儲空間,其次對于查詢來說,在一個(gè)相對較小的字段內(nèi)搜索效率顯然要高些。

19.任何地方都不要使用 select * from t ,用具體的字段列表代替“*”,不要返回用不到的任何字段。

20.盡量使用表變量來代替臨時(shí)表。如果表變量包含大量數(shù)據(jù),請注意索引非常有限(只有主鍵索引)。

21.避免頻繁創(chuàng)建和刪除臨時(shí)表,以減少系統(tǒng)表資源的消耗。

22.臨時(shí)表并不是不可使用,適當(dāng)?shù)厥褂盟鼈兛梢允鼓承├谈行В?,?dāng)需要重復(fù)引用大型表或常用表中的某個(gè)數(shù)據(jù)集時(shí)。但是,對于一次性事件,最好使用導(dǎo)出表。

23.在新建臨時(shí)表時(shí),如果一次性插入數(shù)據(jù)量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果數(shù)據(jù)量不大,為了緩和系統(tǒng)表的資源,應(yīng)先create table,然后insert。

24.如果使用到了臨時(shí)表,在存儲過程的最后務(wù)必將所有的臨時(shí)表顯式刪除,先 truncate table ,然后 drop table ,這樣可以避免系統(tǒng)表的較長時(shí)間鎖定。

25.盡量避免使用游標(biāo),因?yàn)橛螛?biāo)的效率較差,如果游標(biāo)操作的數(shù)據(jù)超過1萬行,那么就應(yīng)該考慮改寫。

26.使用基于游標(biāo)的方法或臨時(shí)表方法之前,應(yīng)先尋找基于集的解決方案來解決問題,基于集的方法通常更有效。

27.與臨時(shí)表一樣,游標(biāo)并不是不可使用。對小型數(shù)據(jù)集使用 FAST_FORWARD 游標(biāo)通常要優(yōu)于其他逐行處理方法,尤其是在必須引用幾個(gè)表才能獲得所需的數(shù)據(jù)時(shí)。在結(jié)果集中包括“合計(jì)”的例程通常要比使用游標(biāo)執(zhí)行的速度快。如果開發(fā)時(shí)間允許,基于游標(biāo)的方法和基于集的方法都可以嘗試一下,看哪一種方法的效果更好。

28.在所有的存儲過程和觸發(fā)器的開始處設(shè)置 SET NOCOUNT ON ,在結(jié)束時(shí)設(shè)置 SET NOCOUNT OFF 。無需在執(zhí)行存儲過程和觸發(fā)器的每個(gè)語句后向客戶端發(fā)送 DONE_IN_PROC 消息。

29.盡量避免大事務(wù)操作,提高系統(tǒng)并發(fā)能力。

30.盡量避免向客戶端返回大數(shù)據(jù)量,若數(shù)據(jù)量過大,應(yīng)該考慮相應(yīng)需求是否合理。

php + mysql 取十萬數(shù)據(jù) 然后計(jì)算后 顯示到前臺會(huì)員界面 處理方案

可以優(yōu)先計(jì)算用戶看到的那一部分?jǐn)?shù)據(jù)。其它的在后臺慢慢計(jì)算,等到用戶看到的時(shí)候再顯示。

如果不能這樣,那就得優(yōu)化算法了,但是再怎么優(yōu)化,這么大的數(shù)據(jù),肯定是要花時(shí)間的。

當(dāng)前標(biāo)題:php十萬數(shù)據(jù)處理 php處理10萬級數(shù)據(jù)
網(wǎng)頁地址:http://jinyejixie.com/article36/dossjpg.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供軟件開發(fā)、微信公眾號、外貿(mào)網(wǎng)站建設(shè)、關(guān)鍵詞優(yōu)化、定制開發(fā)、品牌網(wǎng)站建設(shè)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

網(wǎng)站托管運(yùn)營
乐昌市| 晋城| 钟山县| 明溪县| 即墨市| 固镇县| 西吉县| 康马县| 安陆市| 龙胜| 仙居县| 泸州市| 桂林市| 墨脱县| 介休市| 涿鹿县| 翼城县| 郯城县| 高碑店市| 彭水| 兴仁县| 奉节县| 霍邱县| 墨脱县| 巴彦淖尔市| 巍山| 江安县| 陆河县| 晋城| 九江市| 合川市| 同心县| 漳浦县| 阳山县| 贺兰县| 张北县| 湾仔区| 建德市| 漳平市| 章丘市| 桐城市|