成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

python中差值函數,python求差值

圖像雙三次插值算法原理及python實現

一. 圖像雙三次插值算法原理:

創(chuàng)新互聯堅持“要么做到,要么別承諾”的工作理念,服務領域包括:成都網站制作、成都網站建設、外貿營銷網站建設、企業(yè)官網、英文網站、手機端網站、網站推廣等服務,滿足客戶于互聯網時代的襄城網站設計、移動媒體設計的需求,幫助企業(yè)找到有效的互聯網解決方案。努力成為您成熟可靠的網絡建設合作伙伴!

假設源圖像 A 大小為 m*n ,縮放后的目標圖像 B 的大小為 M*N 。那么根據比例我們可以得到 B(X,Y) 在 A 上的對應坐標為 A(x,y) = A( X*(m/M), Y*(n/N) ) 。在雙線性插值法中,我們選取 A(x,y) 的最近四個點。而在雙立方插值法中,我們選取的是最近的16個像素點作為計算目標圖像 B(X,Y) 處像素值的參數。如圖所示:

如圖所示 P 點就是目標圖像 B 在 (X,Y) 處對應于源圖像中的位置,P 的坐標位置會出現小數部分,所以我們假設 P 的坐標為 P(x+u,y+v),其中 x,y 分別表示整數部分,u,v 分別表示小數部分。那么我們就可以得到如圖所示的最近 16 個像素的位置,在這里用 a(i,j)(i,j=0,1,2,3) 來表示。?

雙立方插值的目的就是通過找到一種關系,或者說系數,可以把這 16 個像素對于 P 處像素值的影響因子找出來,從而根據這個影響因子來獲得目標圖像對應點的像素值,達到圖像縮放的目的。?

? ? BiCubic基函數形式如下:

二. python實現雙三次插值算法

from PIL import Image

import numpy as np

import math

# 產生16個像素點不同的權重

def BiBubic(x):

x=abs(x)

if x=1:

? ? return 1-2*(x**2)+(x**3)

elif x2:

? ? return 4-8*x+5*(x**2)-(x**3)

else:

? ? return 0

# 雙三次插值算法

# dstH為目標圖像的高,dstW為目標圖像的寬

def BiCubic_interpolation(img,dstH,dstW):

scrH,scrW,_=img.shape

#img=np.pad(img,((1,3),(1,3),(0,0)),'constant')

retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)

for i in range(dstH):

? ? for j in range(dstW):

? ? ? ? scrx=i*(scrH/dstH)

? ? ? ? scry=j*(scrW/dstW)

? ? ? ? x=math.floor(scrx)

? ? ? ? y=math.floor(scry)

? ? ? ? u=scrx-x

? ? ? ? v=scry-y

? ? ? ? tmp=0

? ? ? ? for ii in range(-1,2):

? ? ? ? ? ? for jj in range(-1,2):

? ? ? ? ? ? ? ? if x+ii0 or y+jj0 or x+ii=scrH or y+jj=scrW:

? ? ? ? ? ? ? ? ? ? continue

? ? ? ? ? ? ? ? tmp+=img[x+ii,y+jj]*BiBubic(ii-u)*BiBubic(jj-v)

? ? ? ? retimg[i,j]=np.clip(tmp,0,255)

return retimg

im_path='../paojie.jpg'

image=np.array(Image.open(im_path))

image2=BiCubic_interpolation(image,image.shape[0]*2,image.shape[1]*2)

image2=Image.fromarray(image2.astype('uint8')).convert('RGB')

image2.save('BiCubic_interpolation.jpg')

三. 實驗結果:

四. 參考內容:

???

???

python線性插值解析

在缺失值填補上如果用前后的均值填補中間的均值, 比如,0,空,1, 我們希望中間填充0.5;或者0,空,空,1,我們希望中間填充0.33,0.67這樣。

可以用pandas的函數進行填充,因為這個就是線性插值法

df..interpolate()

dd=pd.DataFrame(data=[0,np.nan,np.nan,1])

dd.interpolate()

補充知識:線性插值公式簡單推導

以上這篇python線性插值解析就是我分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持。

雙線性插值法原理 python實現

碼字不易,如果此文對你有所幫助,請幫忙點贊,感謝!

一. 雙線性插值法原理:

? ? ① 何為線性插值?

? ? 插值就是在兩個數之間插入一個數,線性插值原理圖如下:

? ? ② 各種插值法:

? ? 插值法的第一步都是相同的,計算目標圖(dstImage)的坐標點對應原圖(srcImage)中哪個坐標點來填充,計算公式為:

? ? srcX = dstX * (srcWidth/dstWidth)

? ? srcY = dstY * (srcHeight/dstHeight)

? ? (dstX,dstY)表示目標圖像的某個坐標點,(srcX,srcY)表示與之對應的原圖像的坐標點。srcWidth/dstWidth 和 srcHeight/dstHeight 分別表示寬和高的放縮比。

? ? 那么問題來了,通過這個公式算出來的 srcX, scrY 有可能是小數,但是原圖像坐標點是不存在小數的,都是整數,得想辦法把它轉換成整數才行。

不同插值法的區(qū)別就體現在 srcX, scrY 是小數時,怎么將其變成整數去取原圖像中的像素值。

最近鄰插值(Nearest-neighborInterpolation):看名字就很直白,四舍五入選取最接近的整數。這樣的做法會導致像素變化不連續(xù),在目標圖像中產生鋸齒邊緣。

雙線性插值(Bilinear Interpolation):雙線性就是利用與坐標軸平行的兩條直線去把小數坐標分解到相鄰的四個整數坐標點。權重與距離成反比。

? ??雙三次插值(Bicubic Interpolation):與雙線性插值類似,只不過用了相鄰的16個點。但是需要注意的是,前面兩種方法能保證兩個方向的坐標權重和為1,但是雙三次插值不能保證這點,所以可能出現像素值越界的情況,需要截斷。

? ? ③ 雙線性插值算法原理

假如我們想得到未知函數 f 在點 P = (x, y) 的值,假設我們已知函數 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四個點的值。最常見的情況,f就是一個像素點的像素值。首先在 x 方向進行線性插值,然后再在 y 方向上進行線性插值,最終得到雙線性插值的結果。

④ 舉例說明

二. python實現灰度圖像雙線性插值算法:

灰度圖像雙線性插值放大縮小

import numpy as np

import math

import cv2

def double_linear(input_signal, zoom_multiples):

'''

雙線性插值

:param input_signal: 輸入圖像

:param zoom_multiples: 放大倍數

:return: 雙線性插值后的圖像

'''

input_signal_cp = np.copy(input_signal)? # 輸入圖像的副本

input_row, input_col = input_signal_cp.shape # 輸入圖像的尺寸(行、列)

# 輸出圖像的尺寸

output_row = int(input_row * zoom_multiples)

output_col = int(input_col * zoom_multiples)

output_signal = np.zeros((output_row, output_col)) # 輸出圖片

for i in range(output_row):

? ? for j in range(output_col):

? ? ? ? # 輸出圖片中坐標 (i,j)對應至輸入圖片中的最近的四個點點(x1,y1)(x2, y2),(x3, y3),(x4,y4)的均值

? ? ? ? temp_x = i / output_row * input_row

? ? ? ? temp_y = j / output_col * input_col

? ? ? ? x1 = int(temp_x)

? ? ? ? y1 = int(temp_y)

? ? ? ? x2 = x1

? ? ? ? y2 = y1 + 1

? ? ? ? x3 = x1 + 1

? ? ? ? y3 = y1

? ? ? ? x4 = x1 + 1

? ? ? ? y4 = y1 + 1

? ? ? ? u = temp_x - x1

? ? ? ? v = temp_y - y1

? ? ? ? # 防止越界

? ? ? ? if x4 = input_row:

? ? ? ? ? ? x4 = input_row - 1

? ? ? ? ? ? x2 = x4

? ? ? ? ? ? x1 = x4 - 1

? ? ? ? ? ? x3 = x4 - 1

? ? ? ? if y4 = input_col:

? ? ? ? ? ? y4 = input_col - 1

? ? ? ? ? ? y3 = y4

? ? ? ? ? ? y1 = y4 - 1

? ? ? ? ? ? y2 = y4 - 1

? ? ? ? # 插值

? ? ? ? output_signal[i, j] = (1-u)*(1-v)*int(input_signal_cp[x1, y1]) + (1-u)*v*int(input_signal_cp[x2, y2]) + u*(1-v)*int(input_signal_cp[x3, y3]) + u*v*int(input_signal_cp[x4, y4])

return output_signal

# Read image

img = cv2.imread("../paojie_g.jpg",0).astype(np.float)

out = double_linear(img,2).astype(np.uint8)

# Save result

cv2.imshow("result", out)

cv2.imwrite("out.jpg", out)

cv2.waitKey(0)

cv2.destroyAllWindows()

三. 灰度圖像雙線性插值實驗結果:

四. 彩色圖像雙線性插值python實現

def BiLinear_interpolation(img,dstH,dstW):

scrH,scrW,_=img.shape

img=np.pad(img,((0,1),(0,1),(0,0)),'constant')

retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)

for i in range(dstH-1):

? ? for j in range(dstW-1):

? ? ? ? scrx=(i+1)*(scrH/dstH)

? ? ? ? scry=(j+1)*(scrW/dstW)

? ? ? ? x=math.floor(scrx)

? ? ? ? y=math.floor(scry)

? ? ? ? u=scrx-x

? ? ? ? v=scry-y

? ? ? ? retimg[i,j]=(1-u)*(1-v)*img[x,y]+u*(1-v)*img[x+1,y]+(1-u)*v*img[x,y+1]+u*v*img[x+1,y+1]

return retimg

im_path='../paojie.jpg'

image=np.array(Image.open(im_path))

image2=BiLinear_interpolation(image,image.shape[0]*2,image.shape[1]*2)

image2=Image.fromarray(image2.astype('uint8')).convert('RGB')

image2.save('3.png')

五. 彩色圖像雙線性插值實驗結果:

六. 最近鄰插值算法和雙三次插值算法可參考:

① 最近鄰插值算法:

???

? ? ② 雙三次插值算法:

七. 參考內容:

? ??

???

分享名稱:python中差值函數,python求差值
當前URL:http://jinyejixie.com/article22/hojhjc.html

成都網站建設公司_創(chuàng)新互聯,為您提供虛擬主機軟件開發(fā)、微信小程序、ChatGPT定制開發(fā)、Google

廣告

聲明:本網站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯

成都定制網站建設
东光县| 即墨市| 邵阳县| 海盐县| 宜黄县| 韶山市| 沅陵县| 灵宝市| 萨嘎县| 临夏县| 贺州市| 仙桃市| 望城县| 韩城市| 碌曲县| 汉源县| 仙桃市| 棋牌| 石柱| 龙门县| 新蔡县| 万荣县| 永州市| 西宁市| 响水县| 监利县| 水富县| 秦安县| 汉中市| 台中市| 同德县| 宁蒗| 泗洪县| 清新县| 铜梁县| 肃南| 城市| 盐城市| 泰宁县| 金坛市| 东方市|