成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

用TensorFlow實現(xiàn)戴明回歸算法的示例-創(chuàng)新互聯(lián)

如果最小二乘線性回歸算法最小化到回歸直線的豎直距離(即,平行于y軸方向),則戴明回歸最小化到回歸直線的總距離(即,垂直于回歸直線)。其最小化x值和y值兩個方向的誤差,具體的對比圖如下圖。

創(chuàng)新互聯(lián)堅持“要么做到,要么別承諾”的工作理念,服務(wù)領(lǐng)域包括:成都網(wǎng)站建設(shè)、網(wǎng)站建設(shè)、企業(yè)官網(wǎng)、英文網(wǎng)站、手機(jī)端網(wǎng)站、網(wǎng)站推廣等服務(wù),滿足客戶于互聯(lián)網(wǎng)時代的獻(xiàn)縣網(wǎng)站設(shè)計、移動媒體設(shè)計的需求,幫助企業(yè)找到有效的互聯(lián)網(wǎng)解決方案。努力成為您成熟可靠的網(wǎng)絡(luò)建設(shè)合作伙伴!

線性回歸算法的損失函數(shù)最小化豎直距離;而這里需要最小化總距離。給定直線的斜率和截距,則求解一個點到直線的垂直距離有已知的幾何公式。代入幾何公式并使TensorFlow最小化距離。

損失函數(shù)是由分子和分母組成的幾何公式。給定直線y=mx+b,點(x0,y0),則求兩者間的距離的公式為:

用TensorFlow實現(xiàn)戴明回歸算法的示例

# 戴明回歸
#----------------------------------
#
# This function shows how to use TensorFlow to
# solve linear Deming regression.
# y = Ax + b
#
# We will use the iris data, specifically:
# y = Sepal Length
# x = Petal Width

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph()

# Create graph
sess = tf.Session()

# Load the data
# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])

# Declare batch size
batch_size = 50

# Initialize placeholders
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

# Create variables for linear regression
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))

# Declare model operations
model_output = tf.add(tf.matmul(x_data, A), b)

# Declare Demming loss function
demming_numerator = tf.abs(tf.subtract(y_target, tf.add(tf.matmul(x_data, A), b)))
demming_denominator = tf.sqrt(tf.add(tf.square(A),1))
loss = tf.reduce_mean(tf.truediv(demming_numerator, demming_denominator))

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.1)
train_step = my_opt.minimize(loss)

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec = []
for i in range(250):
  rand_index = np.random.choice(len(x_vals), size=batch_size)
  rand_x = np.transpose([x_vals[rand_index]])
  rand_y = np.transpose([y_vals[rand_index]])
  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
  temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
  loss_vec.append(temp_loss)
  if (i+1)%50==0:
    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))
    print('Loss = ' + str(temp_loss))

# Get the optimal coefficients
[slope] = sess.run(A)
[y_intercept] = sess.run(b)

# Get best fit line
best_fit = []
for i in x_vals:
 best_fit.append(slope*i+y_intercept)

# Plot the result
plt.plot(x_vals, y_vals, 'o', label='Data Points')
plt.plot(x_vals, best_fit, 'r-', label='Best fit line', linewidth=3)
plt.legend(loc='upper left')
plt.title('Sepal Length vs Pedal Width')
plt.xlabel('Pedal Width')
plt.ylabel('Sepal Length')
plt.show()

# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('L2 Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('L2 Loss')
plt.show()

網(wǎng)站欄目:用TensorFlow實現(xiàn)戴明回歸算法的示例-創(chuàng)新互聯(lián)
標(biāo)題路徑:http://jinyejixie.com/article22/cshcjc.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供關(guān)鍵詞優(yōu)化、商城網(wǎng)站、虛擬主機(jī)網(wǎng)站設(shè)計公司、標(biāo)簽優(yōu)化、電子商務(wù)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

外貿(mào)網(wǎng)站建設(shè)
兴城市| 漳浦县| 斗六市| 调兵山市| 竹北市| 遂宁市| 噶尔县| 青河县| 秦安县| 呈贡县| 崇仁县| 扶余县| 河东区| 宁远县| 苍梧县| 金寨县| 沐川县| 阿荣旗| 天长市| 海丰县| 榆社县| 东乡县| 治县。| 襄樊市| 洛南县| 油尖旺区| 慈利县| 仁寿县| 吐鲁番市| 巴林左旗| 卢湾区| 临沭县| 莲花县| 云和县| 康保县| 昔阳县| 临夏县| 昌都县| 临颍县| 新源县| 湘阴县|