2022-10-05 分類: 網(wǎng)站建設(shè)
隨著萬物互聯(lián)時代的到來,物聯(lián)網(wǎng)設(shè)備數(shù)量呈爆炸式增長,在傳統(tǒng)的云計算模型下,需要將終端設(shè)備產(chǎn)生的海量數(shù)據(jù)傳輸?shù)皆朴嬎阒行姆?wù)器,而海量數(shù)據(jù)傳輸所帶來的時延無法滿足當(dāng)前多種實時性服務(wù)的時延要求。在此背景下,邊緣計算的出現(xiàn)開創(chuàng)了能夠在網(wǎng)絡(luò)邊緣處收集和處理數(shù)據(jù)的新型計算模式,為解決傳統(tǒng)云計算模式中的時延、帶寬和負(fù)載等問題帶來了極大便利。
邊緣計算通過將部分云中心的功能拓展到網(wǎng)絡(luò)邊緣,為終端設(shè)備提供有效的數(shù)據(jù)訪問、計算、處理、存儲、控制等服務(wù),實現(xiàn)了從云到物之間無縫連接,被認(rèn)為是實現(xiàn)萬物互聯(lián)的基礎(chǔ)。
許多早期的物聯(lián)網(wǎng)設(shè)備只能收集和發(fā)送數(shù)據(jù)去分析,然而,如今設(shè)備日益增長的計算能力允許現(xiàn)場執(zhí)行復(fù)雜的計算,這得益于單片機(jī)嵌入式系統(tǒng)的發(fā)展使得越來越多的商用設(shè)備擁有足夠的資源來運行較為成熟的操作系統(tǒng),使其成為智能終端。同時,計算機(jī)技術(shù)與網(wǎng)絡(luò)通信技術(shù)的發(fā)展可以實現(xiàn)物與物之間數(shù)據(jù)信息的實時共享,實現(xiàn)具有智能化的實時數(shù)據(jù)收集、傳遞、處理、執(zhí)行,使得物聯(lián)網(wǎng)(Internet of Things, IoT)具有巨大的潛力。
隨著物聯(lián)網(wǎng)的快速發(fā)展和4G/5G通信技術(shù)的普及,終端設(shè)備能夠獲得環(huán)境感知與增強(qiáng)的處理能力,該趨勢使得人類社會正在走入萬物互聯(lián)(Internet of Everything, IoE)的時代。[1]將人、物、數(shù)據(jù)融合在一起,會得到一個規(guī)模巨大的網(wǎng)絡(luò),使數(shù)據(jù)共享和網(wǎng)絡(luò)連接比以往任何時候都更加相關(guān)聯(lián)和有價值,為個人、企業(yè)、國家、社會創(chuàng)造了前所未有的發(fā)展機(jī)遇。以萬物互聯(lián)為背景,大數(shù)據(jù)處理正在從以云計算為中心的集中式處理時代,跨入以萬物互聯(lián)為核心的邊緣計算時代。
從云計算到邊緣計算
云計算在過去十幾年里是個非常熱門的研究領(lǐng)域,它具有高可靠性、成本低廉、按需分配信息等特點,為人們解決大規(guī)模計算、資源存儲等問題開辟了一條新路徑。云計算是一些由計算資源集合(網(wǎng)絡(luò)、服務(wù)器、存儲)組成的服務(wù)池,通過多租戶模式為多個消費者提供服務(wù),服務(wù)池中的資源可以通過接入網(wǎng)絡(luò)來獲取,能夠?qū)崿F(xiàn)動態(tài)提供服務(wù)并重新配置。
云計算模式擁有不同的部署模型和服務(wù)模型,從給任何消費者提供云計算服務(wù)的公有云模型到部署各自的私有云計算平臺,從提供基礎(chǔ)計算資源的基礎(chǔ)設(shè)施即服務(wù)(Infrastructure as a Service, IaaS)模型到應(yīng)用作為能力的軟件即服務(wù)(Softwareas a Service, SaaS)模型。云計算具有很多優(yōu)勢,如最小化管理代價、方便、彈性、按次收費、普遍性,使其得到廣泛的應(yīng)用。[2]這種大規(guī)模的商業(yè)模式計算數(shù)據(jù)中心有足夠多的資源為巨量的用戶服務(wù)。 然而,這種資源的集中化表現(xiàn)出終端用戶設(shè)備和服務(wù)云之間巨大的平均距離,反過來增加了平均網(wǎng)絡(luò)延遲和抖動。[3]除此之外,集中式云計算模型也已經(jīng)展現(xiàn)出許多其他內(nèi)在的問題。
(一)云計算線性增長的計算能力不能滿足網(wǎng)絡(luò)邊緣海量的多源數(shù)據(jù)處理需求;[4]
(二)由于大規(guī)模的用戶接入,網(wǎng)絡(luò)帶寬和傳輸速度已經(jīng)達(dá)到瓶頸,同時,用戶和云中心之間長距離的傳輸將會導(dǎo)致很高的服務(wù)延遲和計算資源的浪費;
(三)網(wǎng)絡(luò)邊緣的大部分終端用戶一般是資源限制的移動設(shè)備,只有較低的存儲、計算能力和有限的電池供應(yīng)周期,所以它需要給相對于云數(shù)據(jù)中心較短距離傳輸?shù)倪吘壭遁d一些計算任務(wù);
(四)在外包處理中,邊緣設(shè)備的用戶隱私數(shù)據(jù)容易被泄露。例如,精確的用戶位置甚至移動軌跡。
因此,傳統(tǒng)的云計算不能有效支持基于萬物互聯(lián)的應(yīng)用服務(wù)。在過去幾年,許多新的模式已經(jīng)出現(xiàn),如,霧計算,移動邊緣計算和微云計算等,這些邊緣模式的共同特征是將計算資源部署在網(wǎng)絡(luò)的邊緣。
2012年,思科提出了霧計算(Fog Computing)的概念,它起始的定義是“以云計算模式的拓展在終端設(shè)備和傳統(tǒng)云服務(wù)器之間提供計算、存儲和網(wǎng)絡(luò)服務(wù)”,是為遷移云計算中心任務(wù)到網(wǎng)絡(luò)邊緣設(shè)備執(zhí)行的一種高度虛擬化計算平臺;
2013年,移動邊緣計算(Mobile Edge Computing, MEC)的術(shù)語第一次被提出,用于描述網(wǎng)絡(luò)邊緣的服務(wù)執(zhí)行,指的是在接近移動用戶的無線接入網(wǎng)范圍內(nèi),提供信息技術(shù)服務(wù)和云計算能力的一種網(wǎng)絡(luò)結(jié)構(gòu);微云計算更加側(cè)重于“移動”的概念,其處在移動終端和云平臺之間,是被部署在網(wǎng)絡(luò)邊緣、具有移動性的小型數(shù)據(jù)中心。
類似地,有許多計算模式的目標(biāo)是將云服務(wù)和資源帶到距用戶更近的地方,有效地處理邊緣大數(shù)據(jù)問題。研究者將這種把從數(shù)據(jù)源到云計算中心路徑之間的任意計算、存儲、網(wǎng)絡(luò)資源看作是一個“連續(xù)統(tǒng)”,[5]而邊緣,可以是這條路徑上的一個或多個資源節(jié)點的模式的計算統(tǒng)稱為“邊緣計算”。 在網(wǎng)絡(luò)邊緣的設(shè)備由于其對大數(shù)據(jù)的處理能力從數(shù)據(jù)消費者變?yōu)閿?shù)據(jù)生產(chǎn)者。例如,數(shù)據(jù)獲取、模式識別和數(shù)據(jù)挖掘。同時,這些終端設(shè)備提供豐富的服務(wù)接口,以邊緣計算模型為核心,結(jié)合云計算中心一起為用戶提供協(xié)作計算服務(wù),二者相輔相成,應(yīng)用于云中心和邊緣端大數(shù)據(jù)處理,解決萬物互聯(lián)下云計算服務(wù)不足的問題。
顯而易見,邊緣計算與云計算相比,并不是為了取代云計算,而是對云計算的補(bǔ)充和延伸,為移動計算、萬物互聯(lián)等提供更好的平臺。
邊緣計算模型需要云計算中心的強(qiáng)大計算能力和海量存儲的支持,而云計算也同樣需要邊緣計算中邊緣設(shè)備對于海量數(shù)據(jù)及隱私數(shù)據(jù)的處理,從而滿足實時性、隱私保護(hù)和降低功耗等需求。
邊緣計算特性
邊緣計算的架構(gòu)是如圖1中的“終端設(shè)備—邊緣—云中心”三層模型,三層都可以為應(yīng)用提供資源與服務(wù)。在這種架構(gòu)中,邊緣設(shè)備可以連接到邊緣服務(wù)器上,可以彼此相互連接,也可以直接連接到云。這樣的計算結(jié)構(gòu)表明了邊緣計算的執(zhí)行可以發(fā)生在不同的層,像在核心云、邊緣服務(wù)器和終端節(jié)點上。
盡管邊緣計算的目的是執(zhí)行一個應(yīng)用中計算密集和延遲敏感的部分,邊緣服務(wù)器的一些應(yīng)用仍然需要和云中心通信來為全局應(yīng)用同步數(shù)據(jù)。值得注意的是,分層代表了邊緣計算中各組成部分的不同特征和計算能力。最低層為有較少計算能力的終端設(shè)備,主要訂閱邊緣服務(wù)。中間節(jié)點離終端用戶更近的提供邊緣計算服務(wù)。邊緣服務(wù)器有時接入離終端節(jié)點距離很遠(yuǎn)的云中心。
圖1 終端設(shè)備—邊緣—云中心 三層模型架構(gòu)
數(shù)據(jù)分層結(jié)構(gòu)利于云中心和邊緣的交互。在很多應(yīng)用場景中,邊緣節(jié)點收集傳感器和設(shè)備產(chǎn)生的數(shù)據(jù),做適當(dāng)處理,向執(zhí)行器發(fā)出控制命令。在過濾掉本地執(zhí)行所需的數(shù)據(jù)后,將剩下的數(shù)據(jù)抽象虛擬化發(fā)送到更高層,在云端進(jìn)行地理和時間范圍內(nèi)的全局化處理,這個過程的處理時間從秒級到分鐘甚至以天為計量單位。所以,邊緣計算必須支持許多類型的數(shù)據(jù)存儲,從底層的短暫存儲到更高層的半永久或永久存儲。邊緣端可以通過隔離需要在邊緣存儲的用戶數(shù)據(jù)來延展云的功能,管理者可以直接在他的模型里定向分析、保護(hù)安全或者進(jìn)行其他個性化定制服務(wù)。
邊緣計算不能代替云計算,它是一個在終端設(shè)備和傳統(tǒng)云計算數(shù)據(jù)中心之間提供計算、存儲和網(wǎng)絡(luò)服務(wù)的高度虛擬化平臺。[6]邊緣計算的很多特征決定了它是云計算重要的拓展。
(一)邊緣分布、位置感知、低延遲。邊緣計算由許多分布式的終端節(jié)點組成邊緣網(wǎng)絡(luò)。邊緣節(jié)點在網(wǎng)絡(luò)邊緣為終端設(shè)備提供豐富的服務(wù),因此,可以實現(xiàn)低延遲和環(huán)境感知的特性。
(二)分層組織結(jié)構(gòu)。分層代表了邊緣計算不同組成部分的不同特征和計算能力,云中心提供集中化海量資源,綜合情況作全局決策。邊緣節(jié)點使得數(shù)據(jù)的處理和服務(wù)更加靠近終端設(shè)備以降低時耗和功耗。(三)地理分布密集。隨著萬物互聯(lián)的進(jìn)一步發(fā)展,移動終端設(shè)備的數(shù)量達(dá)到了前所未有的程度,邊緣的服務(wù)和應(yīng)用分布式部署以應(yīng)對地理密集的服務(wù)請求。
(四)實時交互。在邊緣計算很多應(yīng)用場景中,必須實現(xiàn)毫秒級的反應(yīng)和交互,應(yīng)用批處理必不可少。比如,車聯(lián)網(wǎng)中的路邊單元監(jiān)控實時路況,必須做到多因素全方位檢測并與來往行人車輛及時交互。(五)高異構(gòu)性。邊緣節(jié)點可能屬于不同地理位置上分離的服務(wù)提供商,形成大規(guī)模異構(gòu)的計算網(wǎng)絡(luò)。邊緣節(jié)點在網(wǎng)絡(luò)架構(gòu)的不同層中是高動態(tài)且異構(gòu)的。
(六)安全性。通過減少信息需要傳輸?shù)木嚯x,竊聽的幾率會大幅度降低。利用基于鄰近距離的認(rèn)證技術(shù),身份驗證會得到增強(qiáng)。邊緣計算的其他特性天然地增強(qiáng)了其安全性。 邊緣計算實現(xiàn)的驅(qū)動力量得益于不同類型的技術(shù)。蓬勃發(fā)展的網(wǎng)絡(luò)技術(shù)是實現(xiàn)延遲敏感型應(yīng)用的基礎(chǔ),例如4G/5G、[7]認(rèn)知無線電。邊緣計算中的這些通信技術(shù)被用于設(shè)備到設(shè)備之間和設(shè)備到邊緣服務(wù)器之間;擁有友好應(yīng)用編程接口的軟件開發(fā)工具箱輔助開發(fā)和集成新的可兼容性應(yīng)用,并支持個性定制化的應(yīng)用和服務(wù);云計算利用集中化的強(qiáng)大的服務(wù)器處理計算密集的數(shù)據(jù),邊緣計算將云部分的能力帶到邊緣終端設(shè)備附近來最小化延遲,所以服務(wù)器也可以幫助小的資源受限的移動設(shè)備卸載計算任務(wù)。
為了處理邊緣計算生態(tài)中邊緣節(jié)點的高異構(gòu)屬性,需要一個通用編排平臺來提供互操作性、軟件可編程性和虛擬化。[8]互操作性允許異構(gòu)邊緣節(jié)點在相同架構(gòu)下運作;軟件可編程性使得應(yīng)用開發(fā)者可以基于通用虛擬化硬件編程,邊緣節(jié)點的底層硬件實現(xiàn)細(xì)節(jié)被屏蔽;虛擬化技術(shù)將邊緣節(jié)點的資源劃分為資源單元,如基于內(nèi)核的虛擬機(jī)(Virtual Machines, VMs)和容器,允許用相同的物理資源產(chǎn)生邏輯上分離的資源,可以使得多個萬物互聯(lián)應(yīng)用在不互相干擾的情況下共享資源。
邊緣計算的應(yīng)用
目前許多方面的服務(wù)已經(jīng)應(yīng)用到了邊緣計算,如視頻分析、智慧交通、智能家居、電子醫(yī)療、智能電網(wǎng)等。
視頻分析。
視頻監(jiān)控和分析在過去的幾年里已經(jīng)得到了大范圍的應(yīng)用,相對于傳統(tǒng)的將視頻數(shù)據(jù)上傳至云,邊緣視頻分析指的是在邊緣設(shè)備上執(zhí)行部分或全部的視頻分析負(fù)載,比如實時性要求高的不同的人工智能檢測算法,其在公共安全和反恐方面展現(xiàn)出顯著的優(yōu)勢:一是低數(shù)據(jù)傳輸開銷,二是低響應(yīng)延遲,三是實現(xiàn)各種前所未有的應(yīng)用程序。[10]由此,可以提取視頻中有價值的信息傳輸?shù)皆谱黾刑幚砗蜎Q策。錄像機(jī)和視頻傳感器獲取并共享不同的視頻內(nèi)容,這些視頻可以存儲且有效管理以便之后使用。不同的安全應(yīng)用可以自動從視頻內(nèi)容存檔中提取所需數(shù)據(jù)。
智慧交通。
隨著萬物互聯(lián)中軟件、硬件和通信技術(shù)的快速發(fā)展,車輛配備了如傳感器和車載計算機(jī)等設(shè)備。這些設(shè)備具有冗余的存儲和計算資源,允許車輛交換信息并且以分布式方法與周圍車輛和路邊基礎(chǔ)設(shè)施協(xié)同執(zhí)行一些復(fù)雜的計算任務(wù)。通過車連車,車連邊緣接入點、邊緣接入點連邊緣接入點的聯(lián)通性和交互性,車聯(lián)網(wǎng)的應(yīng)用場景得到極大的豐富。邊緣的移動性、低延遲、支持實時交互成為一個實現(xiàn)智慧交通的理想化平臺。如,智慧交通燈邊緣節(jié)點可以與傳感器本地交互,基于傳感器探測的信息,智能燈給靠近的車輛發(fā)送警告信號來阻止交通事故。
智能家居。
智能家居是以住宅為平臺,利用綜合布線技術(shù)、網(wǎng)絡(luò)通信技術(shù)、安全防范技術(shù)、自動控制技術(shù)、音視頻技術(shù)將家居生活有關(guān)的設(shè)施集成,構(gòu)建高效的住宅設(shè)施與家庭日程事務(wù)的管理系統(tǒng),提升家居安全性、便利性、舒適性、藝術(shù)性,并實現(xiàn)環(huán)保節(jié)能的居住環(huán)境。[11]智能家居配備了大量涌現(xiàn)的萬物互聯(lián)無線設(shè)備去探測溫度、濕度、天然氣等的剩余水平。[12]建筑中所有的傳感器之間可以互相交換信息,聯(lián)合它們的讀數(shù)可組成有效測量數(shù)據(jù)。
傳感器將使用邊緣設(shè)備的分布式?jīng)Q策和激活狀態(tài)來對測量數(shù)據(jù)做出反饋和響應(yīng)。系統(tǒng)組件會協(xié)同工作來降低室內(nèi)溫度、注入新鮮空氣或打開窗戶??照{(diào)可以除濕或者增加空氣中的濕度。傳感器也可以根據(jù)人的活動做出相應(yīng)反應(yīng)(如,在人進(jìn)入或者離開時打開或關(guān)閉燈)??梢栽诮ㄖ拿繉硬渴鸬讓舆吘壴O(shè)備,在執(zhí)行的更高層協(xié)作處理。在這個場景下的邊緣計算,智能家居可以感知其組織構(gòu)造、內(nèi)外部環(huán)境來節(jié)約能源、水和其他資源。
電子醫(yī)療。
邊緣計算在這幾年里已經(jīng)成功應(yīng)用到各個方面,也被經(jīng)常用于醫(yī)療。在萬物互聯(lián)中,電子醫(yī)療服務(wù)往往是延遲敏感的應(yīng)用,數(shù)據(jù)的實時處理和極短的事務(wù)反應(yīng)時間在醫(yī)療看護(hù)中是至關(guān)重要的,邊緣計算使得終端用戶和醫(yī)護(hù)人員可以實時監(jiān)測從不同傳感器產(chǎn)生的與健康相關(guān)的數(shù)據(jù),如體溫、心率、血壓、脈搏等,如果病人出現(xiàn)緊急情況,可以即刻實施相關(guān)治療措施或通知附近的醫(yī)護(hù)人員,這大大地提高了有效搶救時間的利用率,增加了病人康復(fù)的可能性,降低了造成不可逆損傷的概率,甚至是挽救緊急病人的生命。
起初,云計算也被用于電子醫(yī)療應(yīng)用,但因為延遲的問題并沒有獲得巨大的成功,邊緣計算模式的出現(xiàn)為解決這個問題帶來了新的希望。例如,可以利用邊緣計算來探測、預(yù)測、防止中風(fēng)病人摔倒,跌倒探測算法可以動態(tài)地部署在邊緣設(shè)備和云資源中,文獻(xiàn)[13]中的實驗可以得出邊緣—云中心系統(tǒng)比起單獨使用云計算方法有更短的反應(yīng)時間并消耗更少能源的結(jié)論。
邊緣節(jié)點可能收集到病人很多隱私的信息,可以在不傳到云中心或通知醫(yī)生的情況下,自主產(chǎn)生輔助治療的決策。總的來說,基于邊緣計算的電子醫(yī)療系統(tǒng)帶來更低的時間延遲、移動支持和位置感知并可從一定程度上解決病人隱私擔(dān)憂方面的問題。
智能電網(wǎng)。
智能電網(wǎng)就是電網(wǎng)的智能化(智電電力),也被稱為“電網(wǎng)2.0”,它是建立在集成的、高速雙向通信網(wǎng)絡(luò)的基礎(chǔ)上,通過先進(jìn)的傳感和測量技術(shù)、先進(jìn)的設(shè)備技術(shù)、先進(jìn)的控制方法以及先進(jìn)的決策支持系統(tǒng)技術(shù)的應(yīng)用。[14]作為萬物互聯(lián)邊緣計算的一個典型的應(yīng)用場景,智能電表和微電網(wǎng)在網(wǎng)絡(luò)邊緣設(shè)備上作為能源負(fù)載均衡應(yīng)用。
基于可用性和能源要求,設(shè)備可以自動轉(zhuǎn)換成可代替的能源,比如,太陽能和風(fēng)能。邊緣節(jié)點可以自動觀察能源消耗和分布模式。在大范圍能源網(wǎng)絡(luò)部署的情況下,云計算中心可作為集中策略的工具處理巨量數(shù)據(jù)使得應(yīng)用健壯且動態(tài),邊緣和云中心的協(xié)作可以實現(xiàn)電網(wǎng)的可靠、安全、經(jīng)濟(jì)、高效、環(huán)境友好和使用安全等目標(biāo)。
邊緣計算的挑戰(zhàn)與機(jī)遇
邊緣計算面臨的挑戰(zhàn)涉及很廣的范圍,從異構(gòu)和資源受限節(jié)點的計算任務(wù)分解到云—邊緣接口的定義;從分布計算的狀態(tài)一致性到易失性介質(zhì)的彈性存儲;從經(jīng)濟(jì)激勵的價格到可擴(kuò)展的安全對策。這些問題的基礎(chǔ)是在“本地”和“全局”之間尋找內(nèi)在平衡,我們在云和邊緣之間權(quán)衡,來決策何處分配功能以及如何將它們重新組合。例如,邊緣計算在異構(gòu)節(jié)點(終端用戶、網(wǎng)關(guān)、本地服務(wù)器或者數(shù)據(jù)中心)和一系列基礎(chǔ)軟件上執(zhí)行一個復(fù)雜的應(yīng)用,這個應(yīng)用的編排絕對是一個重大挑戰(zhàn),要考慮高動態(tài)環(huán)境的復(fù)雜性、終端用戶設(shè)備安裝的不同邊緣應(yīng)用和支持不同管理域的必要性來適應(yīng)基礎(chǔ)設(shè)施的極度異構(gòu)性和復(fù)雜的外部環(huán)境。 萬物互聯(lián)場景下,由于邊緣計算的特性,在不同的服務(wù)級應(yīng)用的實現(xiàn)中,展現(xiàn)出特定方面的需求和挑戰(zhàn)。
(一)延遲最小化。高延遲已經(jīng)成為基于萬物互聯(lián)智能應(yīng)用亟待解決的一個嚴(yán)重問題。邊緣計算使得數(shù)據(jù)分析在網(wǎng)絡(luò)的邊緣進(jìn)行,可以支持時間敏感的功能。這是很多商業(yè)應(yīng)用所必須要求的,比如,擁有毫秒級反應(yīng)時間的嵌入式人工智能(Artificial Intelligence, AI)應(yīng)用。作為一個解決方案平臺,邊緣計算必須保證滿足服務(wù)質(zhì)量且及時地交付任務(wù),以達(dá)到延遲敏感應(yīng)用的需求。
(二)動態(tài)和自治。由于萬物互聯(lián)應(yīng)用的啟動-關(guān)閉轉(zhuǎn)換和邊緣節(jié)點的移動性,邊緣網(wǎng)絡(luò)的狀態(tài)是動態(tài)改變的,同時,會有一些不可靠邊緣節(jié)點接入到網(wǎng)絡(luò),邊緣計算要能夠自治地處理這些動態(tài)情況,支持邊緣計算的架構(gòu)需要是動態(tài)可擴(kuò)展的,而且要能夠考慮到個人喜好,滿足定制需求。
(三)服務(wù)質(zhì)量。萬物互聯(lián)應(yīng)用能指定其服務(wù)質(zhì)量(Quality-of-Service, QoS)需求,如,延遲時間、吞吐量和數(shù)據(jù)位置,來滿足關(guān)系感知的卸載處理。邊緣計算需要可以決定在一個共享的邊緣網(wǎng)絡(luò)中同時部署多少個應(yīng)用,并達(dá)到用戶要求的服務(wù)質(zhì)量參數(shù)。
(四)網(wǎng)絡(luò)管理。萬物互聯(lián)場景下,由于海量設(shè)備的接入,產(chǎn)生許多常見網(wǎng)絡(luò)現(xiàn)象。[15]例如,不恰當(dāng)?shù)奶摂M化支持、缺乏無縫連接和低效的擁塞控制,降低了整體的網(wǎng)絡(luò)性能。在邊緣計算中有效使用網(wǎng)絡(luò)資源對萬物互聯(lián)來說是最基本的。
(五)成本優(yōu)化。應(yīng)用一個合適的平臺來實現(xiàn)邊緣計算必要的可擴(kuò)展基礎(chǔ)設(shè)施的部署,牽扯到前期大量的投資和操作花費。[16]這些花費的大部分與網(wǎng)絡(luò)節(jié)點的布局有關(guān),所以,為了最小化整體成本,邊緣節(jié)點的布置需要精心規(guī)劃和優(yōu)化。在合適的位置部署最優(yōu)化的節(jié)點數(shù)量可以大幅降低資金花銷,邊緣節(jié)點的最優(yōu)化布局可以最小化運營成本。
(六)能耗管理。邊緣計算需要分配終端和云之間的計算、存儲和控制功能,使得這個“連續(xù)統(tǒng)”的可用資源得到充分的利用,從而優(yōu)化整個系統(tǒng)的效率和性能。能耗管理是一個基于萬物互聯(lián)場景的重要目標(biāo),邊緣計算需要能源有效的萬物互聯(lián)設(shè)備和應(yīng)用。數(shù)以億計的萬物互聯(lián)節(jié)點需要一個智能感知平臺獲取能源以確保可擴(kuò)展性、減少成本且避免頻繁的電池替換來支持不同應(yīng)用。
(七)資源管理。在應(yīng)用級服務(wù)實現(xiàn)時,最優(yōu)的資源管理也是關(guān)鍵的。適當(dāng)?shù)馁Y源管理包括資源協(xié)調(diào)、可用資源估計和適當(dāng)?shù)呢?fù)載分配。[17]
(八)數(shù)據(jù)管理。目前,海量的萬物互聯(lián)設(shè)備會產(chǎn)生巨量的數(shù)據(jù)需要以實時方式管理。在邊緣計算中,需要有效的數(shù)據(jù)管理機(jī)制。萬物互聯(lián)設(shè)備產(chǎn)生數(shù)據(jù)的集合和傳輸也是數(shù)據(jù)管理中的一項挑戰(zhàn)。
(九)安全與隱私。萬物互聯(lián)場景下的安全不同于其他環(huán)境,主要是因為萬物互聯(lián)設(shè)備受限的資源屬性。邊緣計算由于其分層結(jié)構(gòu)特性可以天然地為資源受限的設(shè)備提供一定的安全保證,也因為如此特性,使得邊緣計算收集的數(shù)據(jù)更加靠近用戶端,可能牽扯到隱私問題。這種情況下,萬物互聯(lián)的安全泄露更加具有毀滅性,而邊緣節(jié)點監(jiān)測和操縱物理設(shè)備的能力是有可能威脅生命的。解決安全與隱私的問題,是實現(xiàn)萬物互聯(lián)與邊緣計算的基礎(chǔ)。
邊緣計算將會帶來許多新的商業(yè)機(jī)會,賦能云至今都不能有效解決的問題。[18]例如,作為云中心的代理為許多不能直接有效連接到云的終端設(shè)備提供云服務(wù)?;谶吘壍姆?wù)范圍正在逐漸擴(kuò)大,云和邊緣將會融合成統(tǒng)一的端到端的平臺并且提供集成服務(wù)和應(yīng)用,為突破現(xiàn)有的云計算商業(yè)模式創(chuàng)造機(jī)會,邊緣計算的商業(yè)模型涉及到多方參與者,網(wǎng)絡(luò)服務(wù)提供商擁有邊緣服務(wù)器和網(wǎng)絡(luò)設(shè)備,終端設(shè)備和用戶可能既是客戶端又是服務(wù)端。為了構(gòu)造一個完全的商業(yè)模型,需要決定如何計算和監(jiān)控資源,對于眾多邊緣參與者,如何根據(jù)冗余的資源獲取激勵報酬也是邊緣計算商業(yè)化進(jìn)程中亟待解決的重要問題。
分享名稱:以萬物互聯(lián)為核心的邊緣計算時代正在開啟
URL標(biāo)題:http://jinyejixie.com/news12/202062.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供小程序開發(fā)、網(wǎng)站內(nèi)鏈、電子商務(wù)、網(wǎng)站建設(shè)、網(wǎng)站設(shè)計公司、域名注冊
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容