這篇文章主要介紹“Windows中能夠提取出圖片邊緣特征的網(wǎng)絡(luò)是什么”,在日常操作中,相信很多人在Windows中能夠提取出圖片邊緣特征的網(wǎng)絡(luò)是什么問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”Windows中能夠提取出圖片邊緣特征的網(wǎng)絡(luò)是什么”的疑惑有所幫助!接下來,請跟著小編一起來學(xué)習(xí)吧!
成都創(chuàng)新互聯(lián)公司專注于網(wǎng)站建設(shè)|網(wǎng)站維護(hù)公司|優(yōu)化|托管以及網(wǎng)絡(luò)推廣,積累了大量的網(wǎng)站設(shè)計與制作經(jīng)驗,為許多企業(yè)提供了網(wǎng)站定制設(shè)計服務(wù),案例作品覆蓋VR全景等行業(yè)。能根據(jù)企業(yè)所處的行業(yè)與銷售的產(chǎn)品,結(jié)合品牌形象的塑造,量身定制品質(zhì)網(wǎng)站。
能夠提取出圖片邊緣特征的網(wǎng)絡(luò)是卷積層;卷積運算的目的是提取輸入的不同特征,第一層卷積層可能只能提取一些低級的特征如邊緣、線條和角等層級,更多層的網(wǎng)路能從低級特征中迭代提取更復(fù)雜的特征。
本文操作環(huán)境:Windows7系統(tǒng)、DELL G3電腦
能夠提取出圖片邊緣特征的網(wǎng)絡(luò)是什么?
能夠提取出圖片邊緣特征的網(wǎng)絡(luò)是卷積層。
卷積神經(jīng)網(wǎng)絡(luò)中每層卷積層(Convolutional layer)由若干卷積單元組成,每個卷積單元的參數(shù)都是通過反向傳播算法最佳化得到的。卷積運算的目的是提取輸入的不同特征,第一層卷積層可能只能提取一些低級的特征如邊緣、線條和角等層級,更多層的網(wǎng)路能從低級特征中迭代提取更復(fù)雜的特征。
卷積神經(jīng)網(wǎng)絡(luò)
卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種前饋神經(jīng)網(wǎng)絡(luò),它的人工神經(jīng)元可以響應(yīng)一部分覆蓋范圍內(nèi)的周圍單元,對于大型圖像處理有出色表現(xiàn)。
卷積神經(jīng)網(wǎng)絡(luò)由一個或多個卷積層和頂端的全連通層(對應(yīng)經(jīng)典的神經(jīng)網(wǎng)絡(luò))組成,同時也包括關(guān)聯(lián)權(quán)重和池化層(pooling layer)。這一結(jié)構(gòu)使得卷積神經(jīng)網(wǎng)絡(luò)能夠利用輸入數(shù)據(jù)的二維結(jié)構(gòu)。與其他深度學(xué)習(xí)結(jié)構(gòu)相比,卷積神經(jīng)網(wǎng)絡(luò)在圖像和語音識別方面能夠給出更好的結(jié)果。這一模型也可以使用反向傳播算法進(jìn)行訓(xùn)練。相比較其他深度、前饋神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò)需要考量的參數(shù)更少,使之成為一種頗具吸引力的深度學(xué)習(xí)結(jié)構(gòu)。
到此,關(guān)于“Windows中能夠提取出圖片邊緣特征的網(wǎng)絡(luò)是什么”的學(xué)習(xí)就結(jié)束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學(xué)習(xí),快去試試吧!若想繼續(xù)學(xué)習(xí)更多相關(guān)知識,請繼續(xù)關(guān)注創(chuàng)新互聯(lián)網(wǎng)站,小編會繼續(xù)努力為大家?guī)砀鄬嵱玫奈恼拢?/p>
新聞標(biāo)題:Windows中能夠提取出圖片邊緣特征的網(wǎng)絡(luò)是什么
網(wǎng)頁地址:http://jinyejixie.com/article8/ijjgip.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供靜態(tài)網(wǎng)站、ChatGPT、自適應(yīng)網(wǎng)站、App設(shè)計、定制網(wǎng)站、品牌網(wǎng)站制作
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)