成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

PyTorch上如何實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN-創(chuàng)新互聯(lián)

這篇文章主要為大家展示了“PyTorch上如何實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN”,內(nèi)容簡而易懂,條理清晰,希望能夠幫助大家解決疑惑,下面讓小編帶領(lǐng)大家一起研究并學(xué)習(xí)一下“PyTorch上如何實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN”這篇文章吧。

創(chuàng)新互聯(lián)建站專注于企業(yè)成都全網(wǎng)營銷推廣、網(wǎng)站重做改版、莘縣網(wǎng)站定制設(shè)計(jì)、自適應(yīng)品牌網(wǎng)站建設(shè)、HTML5、商城開發(fā)、集團(tuán)公司官網(wǎng)建設(shè)、外貿(mào)網(wǎng)站建設(shè)、高端網(wǎng)站制作、響應(yīng)式網(wǎng)頁設(shè)計(jì)等建站業(yè)務(wù),價(jià)格優(yōu)惠性價(jià)比高,為莘縣等各大城市提供網(wǎng)站開發(fā)制作服務(wù)。

一、卷積神經(jīng)網(wǎng)絡(luò)

卷積神經(jīng)網(wǎng)絡(luò)(ConvolutionalNeuralNetwork,CNN)最初是為解決圖像識別等問題設(shè)計(jì)的,CNN現(xiàn)在的應(yīng)用已經(jīng)不限于圖像和視頻,也可用于時(shí)間序列信號,比如音頻信號和文本數(shù)據(jù)等。CNN作為一個(gè)深度學(xué)習(xí)架構(gòu)被提出的最初訴求是降低對圖像數(shù)據(jù)預(yù)處理的要求,避免復(fù)雜的特征工程。在卷積神經(jīng)網(wǎng)絡(luò)中,第一個(gè)卷積層會(huì)直接接受圖像像素級的輸入,每一層卷積(濾波器)都會(huì)提取數(shù)據(jù)中最有效的特征,這種方法可以提取到圖像中最基礎(chǔ)的特征,而后再進(jìn)行組合和抽象形成更高階的特征,因此CNN在理論上具有對圖像縮放、平移和旋轉(zhuǎn)的不變性。

卷積神經(jīng)網(wǎng)絡(luò)CNN的要點(diǎn)就是局部連接(LocalConnection)、權(quán)值共享(WeightsSharing)和池化層(Pooling)中的降采樣(Down-Sampling)。其中,局部連接和權(quán)值共享降低了參數(shù)量,使訓(xùn)練復(fù)雜度大大下降并減輕了過擬合。同時(shí)權(quán)值共享還賦予了卷積網(wǎng)絡(luò)對平移的容忍性,池化層降采樣則進(jìn)一步降低了輸出參數(shù)量并賦予模型對輕度形變的容忍性,提高了模型的泛化能力??梢园丫矸e層卷積操作理解為用少量參數(shù)在圖像的多個(gè)位置上提取相似特征的過程。

二、代碼實(shí)現(xiàn)

import torch 
import torch.nn as nn 
from torch.autograd import Variable 
import torch.utils.data as Data 
import torchvision 
import matplotlib.pyplot as plt 
 
torch.manual_seed(1) 
 
EPOCH = 1 
BATCH_SIZE = 50 
LR = 0.001 
DOWNLOAD_MNIST = True 
 
# 獲取訓(xùn)練集dataset 
training_data = torchvision.datasets.MNIST( 
       root='./mnist/', # dataset存儲路徑 
       train=True, # True表示是train訓(xùn)練集,F(xiàn)alse表示test測試集 
       transform=torchvision.transforms.ToTensor(), # 將原數(shù)據(jù)規(guī)范化到(0,1)區(qū)間 
       download=DOWNLOAD_MNIST, 
       ) 
 
# 打印MNIST數(shù)據(jù)集的訓(xùn)練集及測試集的尺寸 
print(training_data.train_data.size()) 
print(training_data.train_labels.size()) 
# torch.Size([60000, 28, 28]) 
# torch.Size([60000]) 
 
plt.imshow(training_data.train_data[0].numpy(), cmap='gray') 
plt.title('%i' % training_data.train_labels[0]) 
plt.show() 
 
# 通過torchvision.datasets獲取的dataset格式可直接可置于DataLoader 
train_loader = Data.DataLoader(dataset=training_data, batch_size=BATCH_SIZE, 
                shuffle=True) 
 
# 獲取測試集dataset 
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False) 
# 取前2000個(gè)測試集樣本 
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), 
         volatile=True).type(torch.FloatTensor)[:2000]/255 
# (2000, 28, 28) to (2000, 1, 28, 28), in range(0,1) 
test_y = test_data.test_labels[:2000] 
 
class CNN(nn.Module): 
  def __init__(self): 
    super(CNN, self).__init__() 
    self.conv1 = nn.Sequential( # (1,28,28) 
           nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, 
                stride=1, padding=2), # (16,28,28) 
    # 想要con2d卷積出來的圖片尺寸沒有變化, padding=(kernel_size-1)/2 
           nn.ReLU(), 
           nn.MaxPool2d(kernel_size=2) # (16,14,14) 
           ) 
    self.conv2 = nn.Sequential( # (16,14,14) 
           nn.Conv2d(16, 32, 5, 1, 2), # (32,14,14) 
           nn.ReLU(), 
           nn.MaxPool2d(2) # (32,7,7) 
           ) 
    self.out = nn.Linear(32*7*7, 10) 
 
  def forward(self, x): 
    x = self.conv1(x) 
    x = self.conv2(x) 
    x = x.view(x.size(0), -1) # 將(batch,32,7,7)展平為(batch,32*7*7) 
    output = self.out(x) 
    return output 
 
cnn = CNN() 
print(cnn) 
''''' 
CNN ( 
 (conv1): Sequential ( 
  (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) 
  (1): ReLU () 
  (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1)) 
 ) 
 (conv2): Sequential ( 
  (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) 
  (1): ReLU () 
  (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1)) 
 ) 
 (out): Linear (1568 -> 10) 
) 
''' 
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) 
loss_function = nn.CrossEntropyLoss() 
 
for epoch in range(EPOCH): 
  for step, (x, y) in enumerate(train_loader): 
    b_x = Variable(x) 
    b_y = Variable(y) 
 
    output = cnn(b_x) 
    loss = loss_function(output, b_y) 
    optimizer.zero_grad() 
    loss.backward() 
    optimizer.step() 
 
    if step % 100 == 0: 
      test_output = cnn(test_x) 
      pred_y = torch.max(test_output, 1)[1].data.squeeze() 
      accuracy = sum(pred_y == test_y) / test_y.size(0) 
      print('Epoch:', epoch, '|Step:', step, 
         '|train loss:%.4f'%loss.data[0], '|test accuracy:%.4f'%accuracy) 
 
test_output = cnn(test_x[:10]) 
pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() 
print(pred_y, 'prediction number') 
print(test_y[:10].numpy(), 'real number') 
''''' 
Epoch: 0 |Step: 0 |train loss:2.3145 |test accuracy:0.1040 
Epoch: 0 |Step: 100 |train loss:0.5857 |test accuracy:0.8865 
Epoch: 0 |Step: 200 |train loss:0.0600 |test accuracy:0.9380 
Epoch: 0 |Step: 300 |train loss:0.0996 |test accuracy:0.9345 
Epoch: 0 |Step: 400 |train loss:0.0381 |test accuracy:0.9645 
Epoch: 0 |Step: 500 |train loss:0.0266 |test accuracy:0.9620 
Epoch: 0 |Step: 600 |train loss:0.0973 |test accuracy:0.9685 
Epoch: 0 |Step: 700 |train loss:0.0421 |test accuracy:0.9725 
Epoch: 0 |Step: 800 |train loss:0.0654 |test accuracy:0.9710 
Epoch: 0 |Step: 900 |train loss:0.1333 |test accuracy:0.9740 
Epoch: 0 |Step: 1000 |train loss:0.0289 |test accuracy:0.9720 
Epoch: 0 |Step: 1100 |train loss:0.0429 |test accuracy:0.9770 
[7 2 1 0 4 1 4 9 5 9] prediction number 
[7 2 1 0 4 1 4 9 5 9] real number 
'''

 三、分析解讀

通過利用torchvision.datasets可以快速獲取可以直接置于DataLoader中的dataset格式的數(shù)據(jù),通過train參數(shù)控制是獲取訓(xùn)練數(shù)據(jù)集還是測試數(shù)據(jù)集,也可以在獲取的時(shí)候便直接轉(zhuǎn)換成訓(xùn)練所需的數(shù)據(jù)格式。

卷積神經(jīng)網(wǎng)絡(luò)的搭建通過定義一個(gè)CNN類來實(shí)現(xiàn),卷積層conv1,conv2及out層以類屬性的形式定義,各層之間的銜接信息在forward中定義,定義的時(shí)候要留意各層的神經(jīng)元數(shù)量。

CNN的網(wǎng)絡(luò)結(jié)構(gòu)如下:

CNN (

 (conv1): Sequential (

  (0): Conv2d(1, 16,kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

  (1): ReLU ()

  (2): MaxPool2d (size=(2,2), stride=(2, 2), dilation=(1, 1))

 )

 (conv2): Sequential (

  (0): Conv2d(16, 32,kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

  (1): ReLU ()

  (2): MaxPool2d (size=(2,2), stride=(2, 2), dilation=(1, 1))

 )

 (out): Linear (1568 ->10)

)

經(jīng)過實(shí)驗(yàn)可見,在EPOCH=1的訓(xùn)練結(jié)果中,測試集準(zhǔn)確率可達(dá)到97.7%。

以上是“PyTorch上如何實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN”這篇文章的所有內(nèi)容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內(nèi)容對大家有所幫助,如果還想學(xué)習(xí)更多知識,歡迎關(guān)注創(chuàng)新互聯(lián)成都網(wǎng)站設(shè)計(jì)公司行業(yè)資訊頻道!

另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場景需求。

本文名稱:PyTorch上如何實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN-創(chuàng)新互聯(lián)
標(biāo)題鏈接:http://jinyejixie.com/article8/ccchip.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供ChatGPT關(guān)鍵詞優(yōu)化、網(wǎng)站內(nèi)鏈、虛擬主機(jī)、外貿(mào)建站、軟件開發(fā)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

成都網(wǎng)頁設(shè)計(jì)公司
腾冲县| 盈江县| 东海县| 铜梁县| 洪洞县| 嘉善县| 红桥区| 日喀则市| 沾化县| 宣威市| 攀枝花市| 清新县| 乌兰浩特市| 安龙县| 抚远县| 黄平县| 和林格尔县| 乌拉特后旗| 榆树市| 黑水县| 和田市| 靖江市| 平阴县| 定边县| 阿鲁科尔沁旗| 龙岩市| 南漳县| 马关县| 华宁县| 天峻县| 沾益县| 大竹县| 翁源县| 蕲春县| 阿拉善右旗| 米易县| 高安市| 新巴尔虎右旗| 武宁县| 洛阳市| 浮山县|