成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

分布式存儲(chǔ)nosql,分布式存儲(chǔ)ipfs

什么是NoSQL數(shù)據(jù)庫(kù)

什么是NoSQL數(shù)據(jù)庫(kù)?從名稱“非SQL”或“非關(guān)系型”衍生而來(lái),這些數(shù)據(jù)庫(kù)不使用類似SQL的查詢語(yǔ)言,通常稱為結(jié)構(gòu)化存儲(chǔ)。這些數(shù)據(jù)庫(kù)自1960年就已經(jīng)存在,但是直到現(xiàn)在一些大公司(例如Google和Facebook)開(kāi)始使用它們時(shí),這些數(shù)據(jù)庫(kù)才流行起來(lái)。該數(shù)據(jù)庫(kù)最明顯的優(yōu)勢(shì)是擺脫了一組固定的列、連接和類似SQL的查詢語(yǔ)言的限制。有時(shí),NoSQL這個(gè)名稱也可能表示“不僅僅SQL”,來(lái)確保它們可能支持SQL。 NoSQL數(shù)據(jù)庫(kù)使用諸如鍵值、寬列、圖形或文檔之類的數(shù)據(jù)結(jié)構(gòu),并且可以如JSON之類的不同格式存儲(chǔ)。

創(chuàng)新互聯(lián)2013年至今,先為城子河等服務(wù)建站,城子河等地企業(yè),進(jìn)行企業(yè)商務(wù)咨詢服務(wù)。為城子河企業(yè)網(wǎng)站制作PC+手機(jī)+微官網(wǎng)三網(wǎng)同步一站式服務(wù)解決您的所有建站問(wèn)題。

什么是NoSQL,它有什么優(yōu)缺點(diǎn)?

NoSQL,指的是非關(guān)系型的數(shù)據(jù)庫(kù)。NoSQL有時(shí)也稱作Not Only SQL的縮寫(xiě),是對(duì)不同于傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)的數(shù)據(jù)庫(kù)管理系統(tǒng)的統(tǒng)稱。

NoSQL用于超大規(guī)模數(shù)據(jù)的存儲(chǔ)。(例如谷歌或Facebook每天為他們的用戶收集萬(wàn)億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲(chǔ)不需要固定的模式,無(wú)需多余操作就可以橫向擴(kuò)展。

NoSQL的優(yōu)點(diǎn)/缺點(diǎn)

優(yōu)點(diǎn):

- 高可擴(kuò)展性

- 分布式計(jì)算

- 低成本

- 架構(gòu)的靈活性,半結(jié)構(gòu)化數(shù)據(jù)

- 沒(méi)有復(fù)雜的關(guān)系

缺點(diǎn):

- 沒(méi)有標(biāo)準(zhǔn)化

- 有限的查詢功能(到目前為止)

- 最終一致是不直觀的程序 (BY三人行慕課)

nosql數(shù)據(jù)庫(kù)的四種類型

一般將NoSQL數(shù)據(jù)庫(kù)分為四大類:鍵值(Key-Value)存儲(chǔ)數(shù)據(jù)庫(kù)、列存儲(chǔ)數(shù)據(jù)庫(kù)、文檔型數(shù)據(jù)庫(kù)和圖形(Graph)數(shù)據(jù)庫(kù)。它們的數(shù)據(jù)模型、優(yōu)缺點(diǎn)、典型應(yīng)用場(chǎng)景。

鍵值(Key-Value)存儲(chǔ)數(shù)據(jù)庫(kù)Key指向Value的鍵值對(duì),通常用hash表來(lái)實(shí)現(xiàn)查找速度快數(shù)據(jù)無(wú)結(jié)構(gòu)化(通常只被當(dāng)作字符串或者二進(jìn)制數(shù)據(jù))內(nèi)容緩存,主要用于處理大量數(shù)據(jù)的高訪問(wèn)負(fù)載,也用于一些日志系統(tǒng)等。

列存儲(chǔ)數(shù)據(jù)庫(kù),以列簇式存儲(chǔ),將同一列數(shù)據(jù)存在一起查找速度快,可擴(kuò)展性強(qiáng),更容易進(jìn)行分布式擴(kuò)展功能相對(duì)局限分布式的文件系統(tǒng)。

文檔型數(shù)據(jù)庫(kù),Key-Value對(duì)應(yīng)的鍵值對(duì),Value為結(jié)構(gòu)化數(shù)據(jù),數(shù)據(jù)結(jié)構(gòu)要求不嚴(yán)格,表結(jié)構(gòu)可變(不需要像關(guān)系型數(shù)據(jù)庫(kù)一樣需預(yù)先定義表結(jié)構(gòu)),查詢性能不高,而且缺乏統(tǒng)一的查詢語(yǔ)法,Web應(yīng)用。

圖形(Graph)數(shù)據(jù)庫(kù),圖結(jié)構(gòu),利用圖結(jié)構(gòu)相關(guān)算法(如最短路徑尋址,N度關(guān)系查找等),很多時(shí)候需要對(duì)整個(gè)圖做計(jì)算才能得出需要的信息,而且這種結(jié)構(gòu)不太好做分布式的集群方案,社交網(wǎng)絡(luò),推薦系統(tǒng)等。

大數(shù)據(jù)三大核心技術(shù):拿數(shù)據(jù)、算數(shù)據(jù)、賣數(shù)據(jù)!

大數(shù)據(jù)的由來(lái)

對(duì)于“大數(shù)據(jù)”(Big data)研究機(jī)構(gòu)Gartner給出了這樣的定義?!按髷?shù)據(jù)”是需要新處理模式才能具有更強(qiáng)的決策力、洞察發(fā)現(xiàn)力和流程優(yōu)化能力來(lái)適應(yīng)海量、高增長(zhǎng)率和多樣化的信息資產(chǎn)。

1

麥肯錫全球研究所給出的定義是:一種規(guī)模大到在獲取、存儲(chǔ)、管理、分析方面大大超出了傳統(tǒng)數(shù)據(jù)庫(kù)軟件工具能力范圍的數(shù)據(jù)集合,具有海量的數(shù)據(jù)規(guī)模、快速的數(shù)據(jù)流轉(zhuǎn)、多樣的數(shù)據(jù)類型和價(jià)值密度低四大特征。

大數(shù)據(jù)技術(shù)的戰(zhàn)略意義不在于掌握龐大的數(shù)據(jù)信息,而在于對(duì)這些含有意義的數(shù)據(jù)進(jìn)行專業(yè)化處理。換而言之,如果把大數(shù)據(jù)比作一種產(chǎn)業(yè),那么這種產(chǎn)業(yè)實(shí)現(xiàn)盈利的關(guān)鍵,在于提高對(duì)數(shù)據(jù)的“加工能力”,通過(guò)“加工”實(shí)現(xiàn)數(shù)據(jù)的“增值”。

從技術(shù)上看,大數(shù)據(jù)與云計(jì)算的關(guān)系就像一枚硬幣的正反面一樣密不可分。大數(shù)據(jù)必然無(wú)法用單臺(tái)的計(jì)算機(jī)進(jìn)行處理,必須采用分布式架構(gòu)。它的特色在于對(duì)海量數(shù)據(jù)進(jìn)行分布式數(shù)據(jù)挖掘。但它必須依托云計(jì)算的分布式處理、分布式數(shù)據(jù)庫(kù)和云存儲(chǔ)、虛擬化技術(shù)。

大數(shù)據(jù)需要特殊的技術(shù),以有效地處理大量的容忍經(jīng)過(guò)時(shí)間內(nèi)的數(shù)據(jù)。適用于大數(shù)據(jù)的技術(shù),包括大規(guī)模并行處理(MPP)數(shù)據(jù)庫(kù)、數(shù)據(jù)挖掘、分布式文件系統(tǒng)、分布式數(shù)據(jù)庫(kù)、云計(jì)算平臺(tái)、互聯(lián)網(wǎng)和可擴(kuò)展的存儲(chǔ)系統(tǒng)。

最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

大數(shù)據(jù)的應(yīng)用領(lǐng)域

大數(shù)據(jù)無(wú)處不在,大數(shù)據(jù)應(yīng)用于各個(gè)行業(yè),包括金融、 汽車 、餐飲、電信、能源、體能和 娛樂(lè) 等在內(nèi)的 社會(huì) 各行各業(yè)都已經(jīng)融入了大數(shù)據(jù)的印跡。

制造業(yè),利用工業(yè)大數(shù)據(jù)提升制造業(yè)水平,包括產(chǎn)品故障診斷與預(yù)測(cè)、分析工藝流程、改進(jìn)生產(chǎn)工藝,優(yōu)化生產(chǎn)過(guò)程能耗、工業(yè)供應(yīng)鏈分析與優(yōu)化、生產(chǎn)計(jì)劃與排程。

金融行業(yè),大數(shù)據(jù)在高頻交易、社交情緒分析和信貸風(fēng)險(xiǎn)分析三大金融創(chuàng)新領(lǐng)域發(fā)揮重大作用。

汽車 行業(yè),利用大數(shù)據(jù)和物聯(lián)網(wǎng)技術(shù)的無(wú)人駕駛 汽車 ,在不遠(yuǎn)的未來(lái)將走入我們的日常生活。

互聯(lián)網(wǎng)行業(yè),借助于大數(shù)據(jù)技術(shù),可以分析客戶行為,進(jìn)行商品推薦和針對(duì)性廣告投放。

電信行業(yè),利用大數(shù)據(jù)技術(shù)實(shí)現(xiàn)客戶離網(wǎng)分析,及時(shí)掌握客戶離網(wǎng)傾向,出臺(tái)客戶挽留措施。

能源行業(yè),隨著智能電網(wǎng)的發(fā)展,電力公司可以掌握海量的用戶用電信息,利用大數(shù)據(jù)技術(shù)分析用戶用電模式,可以改進(jìn)電網(wǎng)運(yùn)行,合理設(shè)計(jì)電力需求響應(yīng)系統(tǒng),確保電網(wǎng)運(yùn)行安全。

物流行業(yè),利用大數(shù)據(jù)優(yōu)化物流網(wǎng)絡(luò),提高物流效率,降低物流成本。

城市管理,可以利用大數(shù)據(jù)實(shí)現(xiàn)智能交通、環(huán)保監(jiān)測(cè)、城市規(guī)劃和智能安防。

體育 娛樂(lè) ,大數(shù)據(jù)可以幫助我們訓(xùn)練球隊(duì),決定投拍哪種 題財(cái)?shù)?影視作品,以及預(yù)測(cè)比賽結(jié)果。

安全領(lǐng)域,政府可以利用大數(shù)據(jù)技術(shù)構(gòu)建起強(qiáng)大的國(guó)家安全保障體系,企業(yè)可以利用大數(shù)據(jù)抵御網(wǎng)絡(luò)攻擊,警察可以借助大數(shù)據(jù)來(lái)預(yù)防犯罪。

個(gè)人生活, 大數(shù)據(jù)還可以應(yīng)用于個(gè)人生活,利用與每個(gè)人相關(guān)聯(lián)的“個(gè)人大數(shù)據(jù)”,分析個(gè)人生活行為習(xí)慣,為其提供更加周到的個(gè)性化服務(wù)。

大數(shù)據(jù)的價(jià)值,遠(yuǎn)遠(yuǎn)不止于此,大數(shù)據(jù)對(duì)各行各業(yè)的滲透,大大推動(dòng)了 社會(huì) 生產(chǎn)和生活,未來(lái)必將產(chǎn)生重大而深遠(yuǎn)的影響。

大數(shù)據(jù)方面核心技術(shù)有哪些?

大數(shù)據(jù)技術(shù)的體系龐大且復(fù)雜,基礎(chǔ)的技術(shù)包含數(shù)據(jù)的采集、數(shù)據(jù)預(yù)處理、分布式存儲(chǔ)、NoSQL數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、機(jī)器學(xué)習(xí)、并行計(jì)算、可視化等各種技術(shù)范疇和不同的技術(shù)層面。首先給出一個(gè)通用化的大數(shù)據(jù)處理框架,主要分為下面幾個(gè)方面:數(shù)據(jù)采集與預(yù)處理、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)清洗、數(shù)據(jù)查詢分析和數(shù)據(jù)可視化。

數(shù)據(jù)采集與預(yù)處理

對(duì)于各種來(lái)源的數(shù)據(jù),包括移動(dòng)互聯(lián)網(wǎng)數(shù)據(jù)、社交網(wǎng)絡(luò)的數(shù)據(jù)等,這些結(jié)構(gòu)化和非結(jié)構(gòu)化的海量數(shù)據(jù)是零散的,也就是所謂的數(shù)據(jù)孤島,此時(shí)的這些數(shù)據(jù)并沒(méi)有什么意義,數(shù)據(jù)采集就是將這些數(shù)據(jù)寫(xiě)入數(shù)據(jù)倉(cāng)庫(kù)中,把零散的數(shù)據(jù)整合在一起,對(duì)這些數(shù)據(jù)綜合起來(lái)進(jìn)行分析。數(shù)據(jù)采集包括文件日志的采集、數(shù)據(jù)庫(kù)日志的采集、關(guān)系型數(shù)據(jù)庫(kù)的接入和應(yīng)用程序的接入等。在數(shù)據(jù)量比較小的時(shí)候,可以寫(xiě)個(gè)定時(shí)的腳本將日志寫(xiě)入存儲(chǔ)系統(tǒng),但隨著數(shù)據(jù)量的增長(zhǎng),這些方法無(wú)法提供數(shù)據(jù)安全保障,并且運(yùn)維困難,需要更強(qiáng)壯的解決方案。

Flume NG

Flume NG作為實(shí)時(shí)日志收集系統(tǒng),支持在日志系統(tǒng)中定制各類數(shù)據(jù)發(fā)送方,用于收集數(shù)據(jù),同時(shí),對(duì)數(shù)據(jù)進(jìn)行簡(jiǎn)單處理,并寫(xiě)到各種數(shù)據(jù)接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三層架構(gòu):Agent層,Collector層和Store層,每一層均可水平拓展。其中Agent包含Source,Channel和 Sink,source用來(lái)消費(fèi)(收集)數(shù)據(jù)源到channel組件中,channel作為中間臨時(shí)存儲(chǔ),保存所有source的組件信息,sink從channel中讀取數(shù)據(jù),讀取成功之后會(huì)刪除channel中的信息。

NDC

Logstash

Logstash是開(kāi)源的服務(wù)器端數(shù)據(jù)處理管道,能夠同時(shí)從多個(gè)來(lái)源采集數(shù)據(jù)、轉(zhuǎn)換數(shù)據(jù),然后將數(shù)據(jù)發(fā)送到您最喜歡的 “存儲(chǔ)庫(kù)” 中。一般常用的存儲(chǔ)庫(kù)是Elasticsearch。Logstash 支持各種輸入選擇,可以在同一時(shí)間從眾多常用的數(shù)據(jù)來(lái)源捕捉事件,能夠以連續(xù)的流式傳輸方式,輕松地從您的日志、指標(biāo)、Web 應(yīng)用、數(shù)據(jù)存儲(chǔ)以及各種 AWS 服務(wù)采集數(shù)據(jù)。

Sqoop

Sqoop,用來(lái)將關(guān)系型數(shù)據(jù)庫(kù)和Hadoop中的數(shù)據(jù)進(jìn)行相互轉(zhuǎn)移的工具,可以將一個(gè)關(guān)系型數(shù)據(jù)庫(kù)(例如Mysql、Oracle)中的數(shù)據(jù)導(dǎo)入到Hadoop(例如HDFS、Hive、Hbase)中,也可以將Hadoop(例如HDFS、Hive、Hbase)中的數(shù)據(jù)導(dǎo)入到關(guān)系型數(shù)據(jù)庫(kù)(例如Mysql、Oracle)中。Sqoop 啟用了一個(gè) MapReduce 作業(yè)(極其容錯(cuò)的分布式并行計(jì)算)來(lái)執(zhí)行任務(wù)。Sqoop 的另一大優(yōu)勢(shì)是其傳輸大量結(jié)構(gòu)化或半結(jié)構(gòu)化數(shù)據(jù)的過(guò)程是完全自動(dòng)化的。

流式計(jì)算

流式計(jì)算是行業(yè)研究的一個(gè)熱點(diǎn),流式計(jì)算對(duì)多個(gè)高吞吐量的數(shù)據(jù)源進(jìn)行實(shí)時(shí)的清洗、聚合和分析,可以對(duì)存在于社交網(wǎng)站、新聞等的數(shù)據(jù)信息流進(jìn)行快速的處理并反饋,目前大數(shù)據(jù)流分析工具有很多,比如開(kāi)源的strom,spark streaming等。

Strom集群結(jié)構(gòu)是有一個(gè)主節(jié)點(diǎn)(nimbus)和多個(gè)工作節(jié)點(diǎn)(supervisor)組成的主從結(jié)構(gòu),主節(jié)點(diǎn)通過(guò)配置靜態(tài)指定或者在運(yùn)行時(shí)動(dòng)態(tài)選舉,nimbus與supervisor都是Storm提供的后臺(tái)守護(hù)進(jìn)程,之間的通信是結(jié)合Zookeeper的狀態(tài)變更通知和監(jiān)控通知來(lái)處理。nimbus進(jìn)程的主要職責(zé)是管理、協(xié)調(diào)和監(jiān)控集群上運(yùn)行的topology(包括topology的發(fā)布、任務(wù)指派、事件處理時(shí)重新指派任務(wù)等)。supervisor進(jìn)程等待nimbus分配任務(wù)后生成并監(jiān)控worker(jvm進(jìn)程)執(zhí)行任務(wù)。supervisor與worker運(yùn)行在不同的jvm上,如果由supervisor啟動(dòng)的某個(gè)worker因?yàn)殄e(cuò)誤異常退出(或被kill掉),supervisor會(huì)嘗試重新生成新的worker進(jìn)程。

Zookeeper

Zookeeper是一個(gè)分布式的,開(kāi)放源碼的分布式應(yīng)用程序協(xié)調(diào)服務(wù),提供數(shù)據(jù)同步服務(wù)。它的作用主要有配置管理、名字服務(wù)、分布式鎖和集群管理。配置管理指的是在一個(gè)地方修改了配置,那么對(duì)這個(gè)地方的配置感興趣的所有的都可以獲得變更,省去了手動(dòng)拷貝配置的繁瑣,還很好的保證了數(shù)據(jù)的可靠和一致性,同時(shí)它可以通過(guò)名字來(lái)獲取資源或者服務(wù)的地址等信息,可以監(jiān)控集群中機(jī)器的變化,實(shí)現(xiàn)了類似于心跳機(jī)制的功能。

數(shù)據(jù)存儲(chǔ)

Hadoop作為一個(gè)開(kāi)源的框架,專為離線和大規(guī)模數(shù)據(jù)分析而設(shè)計(jì),HDFS作為其核心的存儲(chǔ)引擎,已被廣泛用于數(shù)據(jù)存儲(chǔ)。

HBase

HBase,是一個(gè)分布式的、面向列的開(kāi)源數(shù)據(jù)庫(kù),可以認(rèn)為是hdfs的封裝,本質(zhì)是數(shù)據(jù)存儲(chǔ)、NoSQL數(shù)據(jù)庫(kù)。HBase是一種Key/Value系統(tǒng),部署在hdfs上,克服了hdfs在隨機(jī)讀寫(xiě)這個(gè)方面的缺點(diǎn),與hadoop一樣,Hbase目標(biāo)主要依靠橫向擴(kuò)展,通過(guò)不斷增加廉價(jià)的商用服務(wù)器,來(lái)增加計(jì)算和存儲(chǔ)能力。

Phoenix

Phoenix,相當(dāng)于一個(gè)Java中間件,幫助開(kāi)發(fā)工程師能夠像使用JDBC訪問(wèn)關(guān)系型數(shù)據(jù)庫(kù)一樣訪問(wèn)NoSQL數(shù)據(jù)庫(kù)HBase。

Yarn

Yarn是一種Hadoop資源管理器,可為上層應(yīng)用提供統(tǒng)一的資源管理和調(diào)度,它的引入為集群在利用率、資源統(tǒng)一管理和數(shù)據(jù)共享等方面帶來(lái)了巨大好處。Yarn由下面的幾大組件構(gòu)成:一個(gè)全局的資源管理器ResourceManager、ResourceManager的每個(gè)節(jié)點(diǎn)代理NodeManager、表示每個(gè)應(yīng)用的Application以及每一個(gè)ApplicationMaster擁有多個(gè)Container在NodeManager上運(yùn)行。

Mesos

Mesos是一款開(kāi)源的集群管理軟件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等應(yīng)用架構(gòu)。

Redis

Redis是一種速度非??斓姆顷P(guān)系數(shù)據(jù)庫(kù),可以存儲(chǔ)鍵與5種不同類型的值之間的映射,可以將存儲(chǔ)在內(nèi)存的鍵值對(duì)數(shù)據(jù)持久化到硬盤中,使用復(fù)制特性來(lái)擴(kuò)展性能,還可以使用客戶端分片來(lái)擴(kuò)展寫(xiě)性能。

Atlas

Atlas是一個(gè)位于應(yīng)用程序與MySQL之間的中間件。在后端DB看來(lái),Atlas相當(dāng)于連接它的客戶端,在前端應(yīng)用看來(lái),Atlas相當(dāng)于一個(gè)DB。Atlas作為服務(wù)端與應(yīng)用程序通訊,它實(shí)現(xiàn)了MySQL的客戶端和服務(wù)端協(xié)議,同時(shí)作為客戶端與MySQL通訊。它對(duì)應(yīng)用程序屏蔽了DB的細(xì)節(jié),同時(shí)為了降低MySQL負(fù)擔(dān),它還維護(hù)了連接池。Atlas啟動(dòng)后會(huì)創(chuàng)建多個(gè)線程,其中一個(gè)為主線程,其余為工作線程。主線程負(fù)責(zé)監(jiān)聽(tīng)所有的客戶端連接請(qǐng)求,工作線程只監(jiān)聽(tīng)主線程的命令請(qǐng)求。

Kudu

Kudu是圍繞Hadoop生態(tài)圈建立的存儲(chǔ)引擎,Kudu擁有和Hadoop生態(tài)圈共同的設(shè)計(jì)理念,它運(yùn)行在普通的服務(wù)器上、可分布式規(guī)模化部署、并且滿足工業(yè)界的高可用要求。其設(shè)計(jì)理念為fast analytics on fast data。作為一個(gè)開(kāi)源的存儲(chǔ)引擎,可以同時(shí)提供低延遲的隨機(jī)讀寫(xiě)和高效的數(shù)據(jù)分析能力。Kudu不但提供了行級(jí)的插入、更新、刪除API,同時(shí)也提供了接近Parquet性能的批量掃描操作。使用同一份存儲(chǔ),既可以進(jìn)行隨機(jī)讀寫(xiě),也可以滿足數(shù)據(jù)分析的要求。Kudu的應(yīng)用場(chǎng)景很廣泛,比如可以進(jìn)行實(shí)時(shí)的數(shù)據(jù)分析,用于數(shù)據(jù)可能會(huì)存在變化的時(shí)序數(shù)據(jù)應(yīng)用等。

在數(shù)據(jù)存儲(chǔ)過(guò)程中,涉及到的數(shù)據(jù)表都是成千上百列,包含各種復(fù)雜的Query,推薦使用列式存儲(chǔ)方法,比如parquent,ORC等對(duì)數(shù)據(jù)進(jìn)行壓縮。Parquet 可以支持靈活的壓縮選項(xiàng),顯著減少磁盤上的存儲(chǔ)。

數(shù)據(jù)清洗

MapReduce作為Hadoop的查詢引擎,用于大規(guī)模數(shù)據(jù)集的并行計(jì)算,”Map(映射)”和”Reduce(歸約)”,是它的主要思想。它極大的方便了編程人員在不會(huì)分布式并行編程的情況下,將自己的程序運(yùn)行在分布式系統(tǒng)中。

隨著業(yè)務(wù)數(shù)據(jù)量的增多,需要進(jìn)行訓(xùn)練和清洗的數(shù)據(jù)會(huì)變得越來(lái)越復(fù)雜,這個(gè)時(shí)候就需要任務(wù)調(diào)度系統(tǒng),比如oozie或者azkaban,對(duì)關(guān)鍵任務(wù)進(jìn)行調(diào)度和監(jiān)控。

Oozie

Oozie是用于Hadoop平臺(tái)的一種工作流調(diào)度引擎,提供了RESTful API接口來(lái)接受用戶的提交請(qǐng)求(提交工作流作業(yè)),當(dāng)提交了workflow后,由工作流引擎負(fù)責(zé)workflow的執(zhí)行以及狀態(tài)的轉(zhuǎn)換。用戶在HDFS上部署好作業(yè)(MR作業(yè)),然后向Oozie提交Workflow,Oozie以異步方式將作業(yè)(MR作業(yè))提交給Hadoop。這也是為什么當(dāng)調(diào)用Oozie 的RESTful接口提交作業(yè)之后能立即返回一個(gè)JobId的原因,用戶程序不必等待作業(yè)執(zhí)行完成(因?yàn)橛行┐笞鳂I(yè)可能會(huì)執(zhí)行很久(幾個(gè)小時(shí)甚至幾天))。Oozie在后臺(tái)以異步方式,再將workflow對(duì)應(yīng)的Action提交給hadoop執(zhí)行。

Azkaban

Azkaban也是一種工作流的控制引擎,可以用來(lái)解決有多個(gè)hadoop或者spark等離線計(jì)算任務(wù)之間的依賴關(guān)系問(wèn)題。azkaban主要是由三部分構(gòu)成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban將大多數(shù)的狀態(tài)信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、認(rèn)證、調(diào)度以及對(duì)工作流執(zhí)行過(guò)程中的監(jiān)控等;Azkaban Executor Server用來(lái)調(diào)度工作流和任務(wù),記錄工作流或者任務(wù)的日志。

流計(jì)算任務(wù)的處理平臺(tái)Sloth,是網(wǎng)易首個(gè)自研流計(jì)算平臺(tái),旨在解決公司內(nèi)各產(chǎn)品日益增長(zhǎng)的流計(jì)算需求。作為一個(gè)計(jì)算服務(wù)平臺(tái),其特點(diǎn)是易用、實(shí)時(shí)、可靠,為用戶節(jié)省技術(shù)方面(開(kāi)發(fā)、運(yùn)維)的投入,幫助用戶專注于解決產(chǎn)品本身的流計(jì)算需求

數(shù)據(jù)查詢分析

Hive

Hive的核心工作就是把SQL語(yǔ)句翻譯成MR程序,可以將結(jié)構(gòu)化的數(shù)據(jù)映射為一張數(shù)據(jù)庫(kù)表,并提供 HQL(Hive SQL)查詢功能。Hive本身不存儲(chǔ)和計(jì)算數(shù)據(jù),它完全依賴于HDFS和MapReduce??梢詫ive理解為一個(gè)客戶端工具,將SQL操作轉(zhuǎn)換為相應(yīng)的MapReduce jobs,然后在hadoop上面運(yùn)行。Hive支持標(biāo)準(zhǔn)的SQL語(yǔ)法,免去了用戶編寫(xiě)MapReduce程序的過(guò)程,它的出現(xiàn)可以讓那些精通SQL技能、但是不熟悉MapReduce 、編程能力較弱與不擅長(zhǎng)Java語(yǔ)言的用戶能夠在HDFS大規(guī)模數(shù)據(jù)集上很方便地利用SQL 語(yǔ)言查詢、匯總、分析數(shù)據(jù)。

Hive是為大數(shù)據(jù)批量處理而生的,Hive的出現(xiàn)解決了傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)(MySql、Oracle)在大數(shù)據(jù)處理上的瓶頸 。Hive 將執(zhí)行計(jì)劃分成map-shuffle-reduce-map-shuffle-reduce…的模型。如果一個(gè)Query會(huì)被編譯成多輪MapReduce,則會(huì)有更多的寫(xiě)中間結(jié)果。由于MapReduce執(zhí)行框架本身的特點(diǎn),過(guò)多的中間過(guò)程會(huì)增加整個(gè)Query的執(zhí)行時(shí)間。在Hive的運(yùn)行過(guò)程中,用戶只需要?jiǎng)?chuàng)建表,導(dǎo)入數(shù)據(jù),編寫(xiě)SQL分析語(yǔ)句即可。剩下的過(guò)程由Hive框架自動(dòng)的完成。

Impala

Impala是對(duì)Hive的一個(gè)補(bǔ)充,可以實(shí)現(xiàn)高效的SQL查詢。使用Impala來(lái)實(shí)現(xiàn)SQL on Hadoop,用來(lái)進(jìn)行大數(shù)據(jù)實(shí)時(shí)查詢分析。通過(guò)熟悉的傳統(tǒng)關(guān)系型數(shù)據(jù)庫(kù)的SQL風(fēng)格來(lái)操作大數(shù)據(jù),同時(shí)數(shù)據(jù)也是可以存儲(chǔ)到HDFS和HBase中的。Impala沒(méi)有再使用緩慢的Hive+MapReduce批處理,而是通過(guò)使用與商用并行關(guān)系數(shù)據(jù)庫(kù)中類似的分布式查詢引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分組成),可以直接從HDFS或HBase中用SELECT、JOIN和統(tǒng)計(jì)函數(shù)查詢數(shù)據(jù),從而大大降低了延遲。Impala將整個(gè)查詢分成一執(zhí)行計(jì)劃樹(shù),而不是一連串的MapReduce任務(wù),相比Hive沒(méi)了MapReduce啟動(dòng)時(shí)間。

Hive 適合于長(zhǎng)時(shí)間的批處理查詢分析,而Impala適合于實(shí)時(shí)交互式SQL查詢,Impala給數(shù)據(jù)人員提供了快速實(shí)驗(yàn),驗(yàn)證想法的大數(shù)據(jù)分析工具,可以先使用Hive進(jìn)行數(shù)據(jù)轉(zhuǎn)換處理,之后使用Impala在Hive處理好后的數(shù)據(jù)集上進(jìn)行快速的數(shù)據(jù)分析??偟膩?lái)說(shuō):Impala把執(zhí)行計(jì)劃表現(xiàn)為一棵完整的執(zhí)行計(jì)劃樹(shù),可以更自然地分發(fā)執(zhí)行計(jì)劃到各個(gè)Impalad執(zhí)行查詢,而不用像Hive那樣把它組合成管道型的map-reduce模式,以此保證Impala有更好的并發(fā)性和避免不必要的中間sort與shuffle。但是Impala不支持UDF,能處理的問(wèn)題有一定的限制。

Spark

Spark擁有Hadoop MapReduce所具有的特點(diǎn),它將Job中間輸出結(jié)果保存在內(nèi)存中,從而不需要讀取HDFS。Spark 啟用了內(nèi)存分布數(shù)據(jù)集,除了能夠提供交互式查詢外,它還可以優(yōu)化迭代工作負(fù)載。Spark 是在 Scala 語(yǔ)言中實(shí)現(xiàn)的,它將 Scala 用作其應(yīng)用程序框架。與 Hadoop 不同,Spark 和 Scala 能夠緊密集成,其中的 Scala 可以像操作本地集合對(duì)象一樣輕松地操作分布式數(shù)據(jù)集。

Nutch

Nutch 是一個(gè)開(kāi)源Java 實(shí)現(xiàn)的搜索引擎。它提供了我們運(yùn)行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬蟲(chóng)。

Solr

Solr用Java編寫(xiě)、運(yùn)行在Servlet容器(如Apache Tomcat或Jetty)的一個(gè)獨(dú)立的企業(yè)級(jí)搜索應(yīng)用的全文搜索服務(wù)器。它對(duì)外提供類似于Web-service的API接口,用戶可以通過(guò)http請(qǐng)求,向搜索引擎服務(wù)器提交一定格式的XML文件,生成索引;也可以通過(guò)Http Get操作提出查找請(qǐng)求,并得到XML格式的返回結(jié)果。

Elasticsearch

Elasticsearch是一個(gè)開(kāi)源的全文搜索引擎,基于Lucene的搜索服務(wù)器,可以快速的儲(chǔ)存、搜索和分析海量的數(shù)據(jù)。設(shè)計(jì)用于云計(jì)算中,能夠達(dá)到實(shí)時(shí)搜索,穩(wěn)定,可靠,快速,安裝使用方便。

還涉及到一些機(jī)器學(xué)習(xí)語(yǔ)言,比如,Mahout主要目標(biāo)是創(chuàng)建一些可伸縮的機(jī)器學(xué)習(xí)算法,供開(kāi)發(fā)人員在Apache的許可下免費(fèi)使用;深度學(xué)習(xí)框架Caffe以及使用數(shù)據(jù)流圖進(jìn)行數(shù)值計(jì)算的開(kāi)源軟件庫(kù)TensorFlow等,常用的機(jī)器學(xué)習(xí)算法比如,貝葉斯、邏輯回歸、決策樹(shù)、神經(jīng)網(wǎng)絡(luò)、協(xié)同過(guò)濾等。

數(shù)據(jù)可視化

對(duì)接一些BI平臺(tái),將分析得到的數(shù)據(jù)進(jìn)行可視化,用于指導(dǎo)決策服務(wù)。主流的BI平臺(tái)比如,國(guó)外的敏捷BI Tableau、Qlikview、PowrerBI等,國(guó)內(nèi)的SmallBI和新興的網(wǎng)易有數(shù)等。

在上面的每一個(gè)階段,保障數(shù)據(jù)的安全是不可忽視的問(wèn)題。

基于網(wǎng)絡(luò)身份認(rèn)證的協(xié)議Kerberos,用來(lái)在非安全網(wǎng)絡(luò)中,對(duì)個(gè)人通信以安全的手段進(jìn)行身份認(rèn)證,它允許某實(shí)體在非安全網(wǎng)絡(luò)環(huán)境下通信,向另一個(gè)實(shí)體以一種安全的方式證明自己的身份。

控制權(quán)限的ranger是一個(gè)Hadoop集群權(quán)限框架,提供操作、監(jiān)控、管理復(fù)雜的數(shù)據(jù)權(quán)限,它提供一個(gè)集中的管理機(jī)制,管理基于yarn的Hadoop生態(tài)圈的所有數(shù)據(jù)權(quán)限。可以對(duì)Hadoop生態(tài)的組件如Hive,Hbase進(jìn)行細(xì)粒度的數(shù)據(jù)訪問(wèn)控制。通過(guò)操作Ranger控制臺(tái),管理員可以輕松的通過(guò)配置策略來(lái)控制用戶訪問(wèn)HDFS文件夾、HDFS文件、數(shù)據(jù)庫(kù)、表、字段權(quán)限。這些策略可以為不同的用戶和組來(lái)設(shè)置,同時(shí)權(quán)限可與hadoop無(wú)縫對(duì)接。

簡(jiǎn)單說(shuō)有三大核心技術(shù):拿數(shù)據(jù),算數(shù)據(jù),賣數(shù)據(jù)。

大數(shù)據(jù)核心技術(shù)有哪些?

大數(shù)據(jù)技術(shù)的體系龐大且復(fù)雜,基礎(chǔ)的技術(shù)包含數(shù)據(jù)的采集、數(shù)據(jù)預(yù)處理、分布式存儲(chǔ)、數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、機(jī)器學(xué)習(xí)、并行計(jì)算、可視化等。

1、數(shù)據(jù)采集與預(yù)處理:FlumeNG實(shí)時(shí)日志收集系統(tǒng),支持在日志系統(tǒng)中定制各類數(shù)據(jù)發(fā)送方,用于收集數(shù)據(jù);Zookeeper是一個(gè)分布式的,開(kāi)放源碼的分布式應(yīng)用程序協(xié)調(diào)服務(wù),提供數(shù)據(jù)同步服務(wù)。

2、數(shù)據(jù)存儲(chǔ):Hadoop作為一個(gè)開(kāi)源的框架,專為離線和大規(guī)模數(shù)據(jù)分析而設(shè)計(jì),HDFS作為其核心的存儲(chǔ)引擎,已被廣泛用于數(shù)據(jù)存儲(chǔ)。HBase,是一個(gè)分布式的、面向列的開(kāi)源數(shù)據(jù)庫(kù),可以認(rèn)為是hdfs的封裝,本質(zhì)是數(shù)據(jù)存儲(chǔ)、NoSQL數(shù)據(jù)庫(kù)。

3、數(shù)據(jù)清洗:MapReduce作為Hadoop的查詢引擎,用于大規(guī)模數(shù)據(jù)集的并行計(jì)算。

4、數(shù)據(jù)查詢分析:Hive的核心工作就是把SQL語(yǔ)句翻譯成MR程序,可以將結(jié)構(gòu)化的數(shù)據(jù)映射為一張數(shù)據(jù)庫(kù)表,并提供HQL(HiveSQL)查詢功能。Spark啟用了內(nèi)存分布數(shù)據(jù)集,除了能夠提供交互式查詢外,它還可以優(yōu)化迭代工作負(fù)載。

5、數(shù)據(jù)可視化:對(duì)接一些BI平臺(tái),將分析得到的數(shù)據(jù)進(jìn)行可視化,用于指導(dǎo)決策服務(wù)。

什么是NoSQL數(shù)據(jù)庫(kù)?

2. 什么是NoSQL?

2.1 NoSQL 概述

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,

泛指非關(guān)系型的數(shù)據(jù)庫(kù)。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫(kù)在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動(dòng)態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問(wèn)題,而非關(guān)系型的數(shù)據(jù)庫(kù)則由于其本身的特點(diǎn)得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫(kù)的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重?cái)?shù)據(jù)種類帶來(lái)的挑戰(zhàn),尤其是大數(shù)據(jù)應(yīng)用難題,包括超大規(guī)模數(shù)據(jù)的存儲(chǔ)。

(例如谷歌或Facebook每天為他們的用戶收集萬(wàn)億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲(chǔ)不需要固定的模式,無(wú)需多余操作就可以橫向擴(kuò)展。

2.2 NoSQL代表

MongDB、 Redis、Memcache

3. 關(guān)系型數(shù)據(jù)庫(kù)與NoSQL的區(qū)別?

3.1 RDBMS

高度組織化結(jié)構(gòu)化數(shù)據(jù)

結(jié)構(gòu)化查詢語(yǔ)言(SQL)

數(shù)據(jù)和關(guān)系都存儲(chǔ)在單獨(dú)的表中。

數(shù)據(jù)操縱語(yǔ)言,數(shù)據(jù)定義語(yǔ)言

嚴(yán)格的一致性

基礎(chǔ)事務(wù)

ACID

關(guān)系型數(shù)據(jù)庫(kù)遵循ACID規(guī)則

事務(wù)在英文中是transaction,和現(xiàn)實(shí)世界中的交易很類似,它有如下四個(gè)特性:

A (Atomicity) 原子性

原子性很容易理解,也就是說(shuō)事務(wù)里的所有操作要么全部做完,要么都不做,事務(wù)成功的條件是事務(wù)里的所有操作都成功,只要有一個(gè)操作失敗,整個(gè)事務(wù)就失敗,需要回滾。比如銀行轉(zhuǎn)賬,從A賬戶轉(zhuǎn)100元至B賬戶,分為兩個(gè)步驟:1)從A賬戶取100元;2)存入100元至B賬戶。這兩步要么一起完成,要么一起不完成,如果只完成第一步,第二步失敗,錢會(huì)莫名其妙少了100元。

C (Consistency) 一致性

一致性也比較容易理解,也就是說(shuō)數(shù)據(jù)庫(kù)要一直處于一致的狀態(tài),事務(wù)的運(yùn)行不會(huì)改變數(shù)據(jù)庫(kù)原本的一致性約束。

I (Isolation) 獨(dú)立性

所謂的獨(dú)立性是指并發(fā)的事務(wù)之間不會(huì)互相影響,如果一個(gè)事務(wù)要訪問(wèn)的數(shù)據(jù)正在被另外一個(gè)事務(wù)修改,只要另外一個(gè)事務(wù)未提交,它所訪問(wèn)的數(shù)據(jù)就不受未提交事務(wù)的影響。比如現(xiàn)有有個(gè)交易是從A賬戶轉(zhuǎn)100元至B賬戶,在這個(gè)交易還未完成的情況下,如果此時(shí)B查詢自己的賬戶,是看不到新增加的100元的

D (Durability) 持久性

持久性是指一旦事務(wù)提交后,它所做的修改將會(huì)永久的保存在數(shù)據(jù)庫(kù)上,即使出現(xiàn)宕機(jī)也不會(huì)丟失。

3.2 NoSQL

代表著不僅僅是SQL

沒(méi)有聲明性查詢語(yǔ)言

沒(méi)有預(yù)定義的模式

鍵 - 值對(duì)存儲(chǔ),列存儲(chǔ),文檔存儲(chǔ),圖形數(shù)據(jù)庫(kù)

最終一致性,而非ACID屬性

非結(jié)構(gòu)化和不可預(yù)知的數(shù)據(jù)

CAP定理

高性能,高可用性和可伸縮性

分布式數(shù)據(jù)庫(kù)中的CAP原理(了解)

CAP定理:

Consistency(一致性), 數(shù)據(jù)一致更新,所有數(shù)據(jù)變動(dòng)都是同步的

Availability(可用性), 好的響應(yīng)性能

Partition tolerance(分區(qū)容錯(cuò)性) 可靠性

P: 系統(tǒng)中任意信息的丟失或失敗不會(huì)影響系統(tǒng)的繼續(xù)運(yùn)作。

定理:任何分布式系統(tǒng)只可同時(shí)滿足二點(diǎn),沒(méi)法三者兼顧。

CAP理論的核心是:一個(gè)分布式系統(tǒng)不可能同時(shí)很好的滿足一致性,可用性和分區(qū)容錯(cuò)性這三個(gè)需求,

因此,根據(jù) CAP 原理將 NoSQL 數(shù)據(jù)庫(kù)分成了滿足 CA 原則、滿足 CP 原則和滿足 AP 原則三 大類:

CA - 單點(diǎn)集群,滿足一致性,可用性的系統(tǒng),通常在可擴(kuò)展性上不太強(qiáng)大。

CP - 滿足一致性,分區(qū)容忍性的系統(tǒng),通常性能不是特別高。

AP - 滿足可用性,分區(qū)容忍性的系統(tǒng),通??赡軐?duì)一致性要求低一些。

CAP理論就是說(shuō)在分布式存儲(chǔ)系統(tǒng)中,最多只能實(shí)現(xiàn)上面的兩點(diǎn)。

而由于當(dāng)前的網(wǎng)絡(luò)硬件肯定會(huì)出現(xiàn)延遲丟包等問(wèn)題,所以分區(qū)容忍性是我們必須需要實(shí)現(xiàn)的。

所以我們只能在一致性和可用性之間進(jìn)行權(quán)衡,沒(méi)有NoSQL系統(tǒng)能同時(shí)保證這三點(diǎn)。

說(shuō)明:C:強(qiáng)一致性 A:高可用性 P:分布式容忍性

舉例:

CA:傳統(tǒng)Oracle數(shù)據(jù)庫(kù)

AP:大多數(shù)網(wǎng)站架構(gòu)的選擇

CP:Redis、Mongodb

注意:分布式架構(gòu)的時(shí)候必須做出取舍。

一致性和可用性之間取一個(gè)平衡。多余大多數(shù)web應(yīng)用,其實(shí)并不需要強(qiáng)一致性。

因此犧牲C換取P,這是目前分布式數(shù)據(jù)庫(kù)產(chǎn)品的方向。

4. 當(dāng)下NoSQL的經(jīng)典應(yīng)用

當(dāng)下的應(yīng)用是 SQL 與 NoSQL 一起使用的。

代表項(xiàng)目:阿里巴巴商品信息的存放。

去 IOE 化。

ps:I 是指 IBM 的小型機(jī),很貴的,好像好幾萬(wàn)一臺(tái);O 是指 Oracle 數(shù)據(jù)庫(kù),也很貴的,好幾萬(wàn)呢;M 是指 EMC 的存儲(chǔ)設(shè)備,也很貴的。

難點(diǎn):

數(shù)據(jù)類型多樣性。

數(shù)據(jù)源多樣性和變化重構(gòu)。

數(shù)據(jù)源改造而服務(wù)平臺(tái)不需要大面積重構(gòu)。

名稱欄目:分布式存儲(chǔ)nosql,分布式存儲(chǔ)ipfs
分享網(wǎng)址:http://jinyejixie.com/article6/dsecgog.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供Google外貿(mào)網(wǎng)站建設(shè)、品牌網(wǎng)站建設(shè)、域名注冊(cè)、網(wǎng)站維護(hù)、網(wǎng)站內(nèi)鏈

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)

小程序開(kāi)發(fā)
隆林| 西充县| 呼伦贝尔市| 阿拉善右旗| 温泉县| 鱼台县| 汉阴县| 富民县| 章丘市| 涞水县| 泽普县| 东至县| 麟游县| 抚松县| 攀枝花市| 广南县| 金平| 浦东新区| 雅安市| 高阳县| 黄骅市| 孟州市| 汉源县| 昆明市| 华池县| 通河县| 吴江市| 阜新市| 抚顺县| 鄂尔多斯市| 天等县| 临清市| 龙游县| 公主岭市| 太仆寺旗| 漠河县| 华阴市| 增城市| 图们市| 门头沟区| 广元市|