本篇文章給大家分享的是有關怎么在Python中使用Numpy模塊中的ndarray函數(shù),小編覺得挺實用的,因此分享給大家學習,希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。
創(chuàng)新互聯(lián)網(wǎng)站建設服務商,為中小企業(yè)提供成都網(wǎng)站制作、成都做網(wǎng)站服務,網(wǎng)站設計,網(wǎng)站托管等一站式綜合服務型公司,專業(yè)打造企業(yè)形象網(wǎng)站,讓您在眾多競爭對手中脫穎而出創(chuàng)新互聯(lián)。定義數(shù)組
>>> import numpy as np >>> m = np.array([[1,2,3], [2,3,4]]) #定義矩陣,int64 >>> m array([[1, 2, 3], [2, 3, 4]]) >>> m = np.array([[1,2,3], [2,3,4]], dtype=np.float) #定義矩陣,float64 >>> m array([[1., 2., 3.], [2., 3., 4.]]) >>> print(m.dtype) #數(shù)據(jù)類型 float64 >>> print(m.shape) #形狀2行3列 (2, 3) >>> print(m.ndim) #維數(shù) 2 >>> print(m.size) #元素個數(shù) 6 >>> print(type(m)) <class 'numpy.ndarray'>
還有一些特殊的方法可以定義矩陣
>>> m = np.zeros((2,2)) #全0 >>> m array([[0., 0.], [0., 0.]]) >>> print(type(m)) #也是ndarray類型 <class 'numpy.ndarray'> >>> m = np.ones((2,2,3)) #全1 >>> m = np.full((3,4), 7) #全為7 >>> np.eye(3) #單位矩陣 array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> np.arange(20).reshape(4,5) #生成一個4行5列的數(shù)組 >>> >>> np.random.random((2,3)) #[0,1)隨機數(shù) array([[0.51123127, 0.40852721, 0.26159126], [0.42450279, 0.34763668, 0.06167501]]) >>> np.random.randint(1,10,(2,3)) #[1,10)隨機整數(shù)的2行3列數(shù)組 array([[5, 4, 9], [2, 5, 7]]) >>> np.random.randn(2,3) #正態(tài)隨機分布 array([[-0.29538656, -0.50370707, -2.05627716], [-1.50126655, 0.41884067, 0.67306605]]) >>> np.random.choice([10,20,30], (2,3)) #隨機選擇 array([[10, 20, 10], [30, 10, 20]]) >>> np.random.beta(1,10,(2,3)) #貝塔分布 array([[0.01588963, 0.12635485, 0.22279098], [0.08950147, 0.02244569, 0.00953366]])
操作數(shù)組
>>> from numpy import * >>> a1=array([1,1,1]) #定義一個數(shù)組 >>> a2=array([2,2,2]) >>> a1+a2 #對于元素相加 array([3, 3, 3]) >>> a1*2 #乘一個數(shù) array([2, 2, 2]) ## >>> a1=np.array([1,2,3]) >>> a1 array([1, 2, 3]) >>> a1**3 #表示對數(shù)組中的每個數(shù)做立方 array([ 1, 8, 27]) ##取值,注意的是它是以0為開始坐標,不matlab不同 >>> a1[1] 2 ##定義多維數(shù)組 >>> a3=np.array([[1,2,3],[4,5,6]]) >>> a3 array([[1, 2, 3], [4, 5, 6]]) >>> a3[0] #取出第一行的數(shù)據(jù) array([1, 2, 3]) >>> a3[0,0] #第一行第一個數(shù)據(jù) 1 >>> a3[0][0] #也可用這種方式 1 >>> a3 array([[1, 2, 3], [4, 5, 6]]) >>> a3.sum(axis=0) #按行相加,列不變 array([5, 7, 9]) >>> a3.sum(axis=1) #按列相加,行不變 array([ 6, 15])
矩陣的數(shù)學運算
關于方陣
>>> m = np.array([[1,2,3], [2,2,3], [2,3,4]]) #定義一個方陣 >>> m array([[1, 2, 3], [2, 2, 3], [2, 3, 4]]) >>> print(np.linalg.det(m)) #求行列式 1.0 >>> print(np.linalg.inv(m)) #求逆 [[-1. 1. 0.] [-2. -2. 3.] [ 2. 1. -2.]] >>> print(np.linalg.eig(m)) #特征值 特征向量 (array([ 7.66898014+0.j , -0.33449007+0.13605817j, -0.33449007-0.13605817j]), array([[-0.47474371+0.j , -0.35654645+0.23768904j, -0.35654645-0.23768904j], [-0.53664812+0.j , 0.80607696+0.j , 0.80607696-0.j ], [-0.6975867 +0.j , -0.38956192-0.12190158j, -0.38956192+0.12190158j]])) >>> y = np.array([1,2,3]) >>> print(np.linalg.solve(m, y)) #解方程組 [ 1. 3. -2.]
矩陣乘法
矩陣乘:按照線性代數(shù)的乘法
>>> a = np.array([[1,2,3], [2,3,4]]) >>> b = np.array([[1,2], [3,4], [5,6]]) >>> a array([[1, 2, 3], [2, 3, 4]]) >>> b array([[1, 2], [3, 4], [5, 6]]) >>> np.dot(a, b) #方法一 array([[22, 28], [31, 40]]) >>> np.matmul(a,b) #方法二 array([[22, 28],
注:一維數(shù)組之間運算時,dot()表示的是內積。
點乘:對應位置相乘
>>> a = np.array([[1,2],[3,4]]) >>> b = np.array([[1,1],[2,2]]) >>> a array([[1, 2], [3, 4]]) >>> b array([[1, 1], [2, 2]]) >>> a * b #方法一 array([[1, 2], [6, 8]]) >>> np.multiply(a, b) #方法二 array([[1, 2], [6, 8]])
以上就是怎么在Python中使用Numpy模塊中的ndarray函數(shù),小編相信有部分知識點可能是我們日常工作會見到或用到的。希望你能通過這篇文章學到更多知識。更多詳情敬請關注創(chuàng)新互聯(lián)成都網(wǎng)站設計公司行業(yè)資訊頻道。
另外有需要云服務器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內外云服務器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務器、裸金屬服務器、高防服務器、香港服務器、美國服務器、虛擬主機、免備案服務器”等云主機租用服務以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應用場景需求。
文章名稱:怎么在Python中使用Numpy模塊中的ndarray函數(shù)-創(chuàng)新互聯(lián)
URL網(wǎng)址:http://jinyejixie.com/article44/isdee.html
成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供網(wǎng)頁設計公司、品牌網(wǎng)站建設、網(wǎng)站營銷、面包屑導航、標簽優(yōu)化、商城網(wǎng)站
聲明:本網(wǎng)站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經(jīng)允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)