成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

Python如何實現(xiàn)圖像去噪方式-創(chuàng)新互聯(lián)

這篇文章將為大家詳細講解有關Python如何實現(xiàn)圖像去噪方式,小編覺得挺實用的,因此分享給大家做個參考,希望大家閱讀完這篇文章后可以有所收獲。

網(wǎng)站建設哪家好,找創(chuàng)新互聯(lián)建站!專注于網(wǎng)頁設計、網(wǎng)站建設、微信開發(fā)、成都小程序開發(fā)、集團企業(yè)網(wǎng)站建設等服務項目。為回饋新老客戶創(chuàng)新互聯(lián)還提供了昌樂免費建站歡迎大家使用!

實現(xiàn)對圖像進行簡單的高斯去噪和椒鹽去噪。

代碼如下:

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import random
import scipy.misc
import scipy.signal
import scipy.ndimage
from matplotlib.font_manager import FontProperties
font_set = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=10)
 
def medium_filter(im, x, y, step):
  sum_s = []
  for k in range(-int(step / 2), int(step / 2) + 1):
    for m in range(-int(step / 2), int(step / 2) + 1):
      sum_s.append(im[x + k][y + m])
  sum_s.sort()
  return sum_s[(int(step * step / 2) + 1)]
 
 
def mean_filter(im, x, y, step):
  sum_s = 0
  for k in range(-int(step / 2), int(step / 2) + 1):
    for m in range(-int(step / 2), int(step / 2) + 1):
      sum_s += im[x + k][y + m] / (step * step)
  return sum_s
 
 
def convert_2d(r):
  n = 3
  # 3*3 濾波器, 每個系數(shù)都是 1/9
  window = np.ones((n, n)) / n ** 2
  # 使用濾波器卷積圖像
  # mode = same 表示輸出尺寸等于輸入尺寸
  # boundary 表示采用對稱邊界條件處理圖像邊緣
  s = scipy.signal.convolve2d(r, window, mode='same', boundary='symm')
  return s.astype(np.uint8)
 
 
def convert_3d(r):
  s_dsplit = []
  for d in range(r.shape[2]):
    rr = r[:, :, d]
    ss = convert_2d(rr)
    s_dsplit.append(ss)
  s = np.dstack(s_dsplit)
  return s
 
 
def add_salt_noise(img):
  rows, cols, dims = img.shape
  R = np.mat(img[:, :, 0])
  G = np.mat(img[:, :, 1])
  B = np.mat(img[:, :, 2])
 
  Grey_sp = R * 0.299 + G * 0.587 + B * 0.114
  Grey_gs = R * 0.299 + G * 0.587 + B * 0.114
 
  snr = 0.9
 
  noise_num = int((1 - snr) * rows * cols)
 
  for i in range(noise_num):
    rand_x = random.randint(0, rows - 1)
    rand_y = random.randint(0, cols - 1)
    if random.randint(0, 1) == 0:
      Grey_sp[rand_x, rand_y] = 0
    else:
      Grey_sp[rand_x, rand_y] = 255
  #給圖像加入高斯噪聲
  Grey_gs = Grey_gs + np.random.normal(0, 48, Grey_gs.shape)
  Grey_gs = Grey_gs - np.full(Grey_gs.shape, np.min(Grey_gs))
  Grey_gs = Grey_gs * 255 / np.max(Grey_gs)
  Grey_gs = Grey_gs.astype(np.uint8)
 
  # 中值濾波
  Grey_sp_mf = scipy.ndimage.median_filter(Grey_sp, (7, 7))
  Grey_gs_mf = scipy.ndimage.median_filter(Grey_gs, (8, 8))
 
  # 均值濾波
  Grey_sp_me = convert_2d(Grey_sp)
  Grey_gs_me = convert_2d(Grey_gs)
 
  plt.subplot(321)
  plt.title('加入椒鹽噪聲',fontproperties=font_set)
  plt.imshow(Grey_sp, cmap='gray')
  plt.subplot(322)
  plt.title('加入高斯噪聲',fontproperties=font_set)
  plt.imshow(Grey_gs, cmap='gray')
 
  plt.subplot(323)
  plt.title('中值濾波去椒鹽噪聲(8*8)',fontproperties=font_set)
  plt.imshow(Grey_sp_mf, cmap='gray')
  plt.subplot(324)
  plt.title('中值濾波去高斯噪聲(8*8)',fontproperties=font_set)
  plt.imshow(Grey_gs_mf, cmap='gray')
 
  plt.subplot(325)
  plt.title('均值濾波去椒鹽噪聲',fontproperties=font_set)
  plt.imshow(Grey_sp_me, cmap='gray')
  plt.subplot(326)
  plt.title('均值濾波去高斯噪聲',fontproperties=font_set)
  plt.imshow(Grey_gs_me, cmap='gray')
  plt.show()
 
 
def main():
  img = np.array(Image.open('E:/pycharm/GraduationDesign/Test/testthree.png'))
  add_salt_noise(img)
 
 
if __name__ == '__main__':
  main()

效果如下

Python如何實現(xiàn)圖像去噪方式

關于“Python如何實現(xiàn)圖像去噪方式”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,使各位可以學到更多知識,如果覺得文章不錯,請把它分享出去讓更多的人看到。

網(wǎng)頁題目:Python如何實現(xiàn)圖像去噪方式-創(chuàng)新互聯(lián)
網(wǎng)頁地址:http://jinyejixie.com/article44/diooee.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供服務器托管、外貿(mào)建站、網(wǎng)站策劃、網(wǎng)站設計公司、關鍵詞優(yōu)化、建站公司

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

成都app開發(fā)公司
威信县| 西峡县| 哈巴河县| 大兴区| 甘南县| 象山县| 常熟市| 新巴尔虎右旗| 潜江市| 靖江市| 辉南县| 泾源县| 新郑市| 兴海县| 通许县| 苍溪县| 维西| 临沭县| 久治县| 霍州市| 浦江县| 恩施市| 小金县| 巧家县| 裕民县| 五家渠市| 常州市| 新昌县| 桐乡市| 诏安县| 咸宁市| 靖江市| 健康| 湟中县| 平乐县| 双牌县| 荥阳市| 枣强县| 吴旗县| 资源县| 孝义市|