根據(jù)導師作業(yè)安排,在學習數(shù)字圖像處理(剛薩雷斯版)第六章 彩色圖像處理 中的彩色模型后,導師安排了一個比較有趣的作業(yè):
融合原理為:
1 注意:遙感原RGB圖image和灰度圖Grayimage為測試用的輸入圖像;
2 步驟:(1)將RGB轉(zhuǎn)換為HSV空間(H:色調(diào),S:飽和度,V:明度);
(2)用Gray圖像誒換掉HSV中的V;
(3)替換后的HSV轉(zhuǎn)換回RGB空間即可得到結(jié)果。
書上只介紹了HSI彩色模型,并沒有說到HSV,所以需要網(wǎng)上查找資料。
Python代碼如下:
import cv2 import numpy as np import math from matplotlib import pyplot as plt def caijian(img):#裁剪圖像與否根據(jù)選擇圖像大小而定,調(diào)用了OpenCV函數(shù) weight=img.shape[0] height=img.shape[1] print(“圖像大小為:%d*%d”%(weight,height)) img=cv2.resize(img,(int(weight/2),int(height/2)),interpolation=cv2.INTER_CUBIC) return(img) def graytograyimg(img): grayimg=img1 weight=img.shape[0] height=img.shape[1] for i in range(weight): for j in range(height): grayimg[i,j]=0.299img[i,j,0]+0.587img[i,j,1]+0.114img[i,j,2] return(grayimg) def RGBtoHSV(img): b,g,r=cv2.split(img) rows,cols=b.shape H=np.ones([rows,cols],“float”) S=np.ones([rows,cols],“float”) V=np.ones([rows,cols],“float”) print(“RGB圖像大?。?d*%d”%(rows,cols)) for i in range(0, rows): for j in range(0, cols): MAX=max((b[i,j],g[i,j],r[i,j])) MIN=min((b[i,j],g[i,j],r[i,j])) V[i,j]=MAX if V[i,j]0: S[i,j]=0 else: S[i,j]=(V[i,j]-MIN)/V[i,j] if MAXMIN: H[i,j]=0 # 如果rgb三向量相同,色調(diào)為黑 elif V[i,j]==r[i,j]: H[i,j]=(60*(float(g[i,j])-b[i,j])/(V[i,j]-MIN)) elif V[i,j]==g[i,j]: H[i,j]=60*(float(b[i,j])-r[i,j])/(V[i,j]-MIN)+120 elif V[i,j]==b[i,j]: H[i,j]=60*(float(r[i,j])-g[i,j])/(V[i,j]-MIN)+240 if H[i,j]<0: H[i,j]=H[i,j]+360 H[i,j]=H[i,j]/2 S[i,j]=255*S[i,j] result=cv2.merge((H,S,V)) # cv2.merge函數(shù)是合并單通道成多通道 result=np.uint8(result) return(result) def graytoHSgry(grayimg,HSVimg): H,S,V=cv2.split(HSVimg) rows,cols=V.shape for i in range(rows): for j in range(cols): V[i,j]=grayimg[i][j][0] newimg=cv2.merge([H,S,V]) newimg=np.uint8(newimg) return newimg def HSVtoRGB(img,rgb): h2,s1,v1=cv2.split(img) rg = rgb.copy() rows,cols=h2.shape r,g,b=0.0,0.0,0.0 b1,g1,r1 = cv2.split(rg) print(“HSV圖像大小為:%d*%d”%(rows,cols)) for i in range(rows): for j in range(cols): h=h2[i][j] v=v1[i][j]/255 s=s1[i][j]/255 h=h3 hx=int(h/60.0) hi=hx%6 f=hx-hi p=v(1-s) q=v*(1-fs) t=v(1-(1-f)s) if hi0: r,g,b=v,t,p elif hi1: r,g,b=q,v,p elif hi2: r,g,b=p,v,t elif hi3: r,g,b=p,q,v elif hi4: r,g,b=t,p,v elif hi5: r,g,b=v,p,q r,g,b=(r255),(g255),(b255) r1[i][j]=int® g1[i][j]=int(g) b1[i][j]=int(b) rg=cv2.merge([b1,g1,r1]) return rg img=cv2.imread(“D:/RGB.bmp”) gray=cv2.imread(“D:/gray.bmp”) img=caijian(img) gray=caijian(gray) grayimg=graytograyimg(gray) HSVimg=RGBtoHSV(img) HSgray=graytoHSgry(grayimg,HSVimg) RGBimg=HSVtoRGB(HSgray,img) cv2.imshow(“image”,img) cv2.imshow(“Grayimage”,grayimg) cv2.imshow(“HSVimage”,HSVimg) cv2.imshow(“HSGrayimage”,HSgray) cv2.imshow(“RGBimage”,RGBimg) cv2.waitKey(0) cv2.destroyAllWindows()
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國服務(wù)器、虛擬主機、免備案服務(wù)器”等云主機租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務(wù)可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場景需求。
網(wǎng)頁題目:Python+OpenCV實現(xiàn)圖像融合的原理及代碼-創(chuàng)新互聯(lián)
網(wǎng)頁鏈接:http://jinyejixie.com/article42/dijcec.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供云服務(wù)器、品牌網(wǎng)站建設(shè)、定制開發(fā)、品牌網(wǎng)站設(shè)計、網(wǎng)站收錄、Google
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容