這篇文章主要介紹了TensorFLow如何實現(xiàn)不同大小圖片的TFrecords存取,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
在興和等地區(qū),都構(gòu)建了全面的區(qū)域性戰(zhàn)略布局,加強發(fā)展的系統(tǒng)性、市場前瞻性、產(chǎn)品創(chuàng)新能力,以專注、極致的服務(wù)理念,為客戶提供網(wǎng)站設(shè)計制作、網(wǎng)站設(shè)計 網(wǎng)站設(shè)計制作按需開發(fā),公司網(wǎng)站建設(shè),企業(yè)網(wǎng)站建設(shè),品牌網(wǎng)站設(shè)計,成都營銷網(wǎng)站建設(shè),外貿(mào)營銷網(wǎng)站建設(shè),興和網(wǎng)站建設(shè)費用合理。全部存入一個TFrecords文件,然后讀取并顯示第一張。
示例:
from PIL import Image import numpy as np import matplotlib.pyplot as plt import tensorflow as tf IMAGE_PATH = 'test/' tfrecord_file = IMAGE_PATH + 'test.tfrecord' writer = tf.python_io.TFRecordWriter(tfrecord_file) def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def get_image_binary(filename): """ You can read in the image using tensorflow too, but it's a drag since you have to create graphs. It's much easier using Pillow and NumPy """ image = Image.open(filename) image = np.asarray(image, np.uint8) shape = np.array(image.shape, np.int32) return shape, image.tobytes() # convert image to raw data bytes in the array. def write_to_tfrecord(label, shape, binary_image, tfrecord_file): """ This example is to write a sample to TFRecord file. If you want to write more samples, just use a loop. """ # write label, shape, and image content to the TFRecord file example = tf.train.Example(features=tf.train.Features(feature={ 'label': _int64_feature(label), 'h': _int64_feature(shape[0]), 'w': _int64_feature(shape[1]), 'c': _int64_feature(shape[2]), 'image': _bytes_feature(binary_image) })) writer.write(example.SerializeToString()) def write_tfrecord(label, image_file, tfrecord_file): shape, binary_image = get_image_binary(image_file) write_to_tfrecord(label, shape, binary_image, tfrecord_file) # print(shape) def main(): # assume the image has the label Chihuahua, which corresponds to class number 1 label = [1,2] image_files = [IMAGE_PATH + 'a.jpg', IMAGE_PATH + 'b.jpg'] for i in range(2): write_tfrecord(label[i], image_files[i], tfrecord_file) writer.close() batch_size = 2 filename_queue = tf.train.string_input_producer([tfrecord_file]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) img_features = tf.parse_single_example( serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'h': tf.FixedLenFeature([], tf.int64), 'w': tf.FixedLenFeature([], tf.int64), 'c': tf.FixedLenFeature([], tf.int64), 'image': tf.FixedLenFeature([], tf.string), }) h = tf.cast(img_features['h'], tf.int32) w = tf.cast(img_features['w'], tf.int32) c = tf.cast(img_features['c'], tf.int32) image = tf.decode_raw(img_features['image'], tf.uint8) image = tf.reshape(image, [h, w, c]) label = tf.cast(img_features['label'],tf.int32) label = tf.reshape(label, [1]) # image = tf.image.resize_images(image, (500,500)) #image, label = tf.train.batch([image, label], batch_size= batch_size) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) image, label=sess.run([image, label]) coord.request_stop() coord.join(threads) print(label) plt.figure() plt.imshow(image) plt.show() if __name__ == '__main__': main()
全部存入一個TFrecords文件,然后按照batch_size讀取,注意需要將圖片變成一樣大才能按照batch_size讀取。
from PIL import Image import numpy as np import matplotlib.pyplot as plt import tensorflow as tf IMAGE_PATH = 'test/' tfrecord_file = IMAGE_PATH + 'test.tfrecord' writer = tf.python_io.TFRecordWriter(tfrecord_file) def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def get_image_binary(filename): """ You can read in the image using tensorflow too, but it's a drag since you have to create graphs. It's much easier using Pillow and NumPy """ image = Image.open(filename) image = np.asarray(image, np.uint8) shape = np.array(image.shape, np.int32) return shape, image.tobytes() # convert image to raw data bytes in the array. def write_to_tfrecord(label, shape, binary_image, tfrecord_file): """ This example is to write a sample to TFRecord file. If you want to write more samples, just use a loop. """ # write label, shape, and image content to the TFRecord file example = tf.train.Example(features=tf.train.Features(feature={ 'label': _int64_feature(label), 'h': _int64_feature(shape[0]), 'w': _int64_feature(shape[1]), 'c': _int64_feature(shape[2]), 'image': _bytes_feature(binary_image) })) writer.write(example.SerializeToString()) def write_tfrecord(label, image_file, tfrecord_file): shape, binary_image = get_image_binary(image_file) write_to_tfrecord(label, shape, binary_image, tfrecord_file) # print(shape) def main(): # assume the image has the label Chihuahua, which corresponds to class number 1 label = [1,2] image_files = [IMAGE_PATH + 'a.jpg', IMAGE_PATH + 'b.jpg'] for i in range(2): write_tfrecord(label[i], image_files[i], tfrecord_file) writer.close() batch_size = 2 filename_queue = tf.train.string_input_producer([tfrecord_file]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) img_features = tf.parse_single_example( serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'h': tf.FixedLenFeature([], tf.int64), 'w': tf.FixedLenFeature([], tf.int64), 'c': tf.FixedLenFeature([], tf.int64), 'image': tf.FixedLenFeature([], tf.string), }) h = tf.cast(img_features['h'], tf.int32) w = tf.cast(img_features['w'], tf.int32) c = tf.cast(img_features['c'], tf.int32) image = tf.decode_raw(img_features['image'], tf.uint8) image = tf.reshape(image, [h, w, c]) label = tf.cast(img_features['label'],tf.int32) label = tf.reshape(label, [1]) image = tf.image.resize_images(image, (224,224)) image = tf.reshape(image, [224, 224, 3]) image, label = tf.train.batch([image, label], batch_size= batch_size) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) image, label=sess.run([image, label]) coord.request_stop() coord.join(threads) print(image.shape) print(label) plt.figure() plt.imshow(image[0,:,:,0]) plt.show() plt.figure() plt.imshow(image[0,:,:,1]) plt.show() image1 = image[0,:,:,:] print(image1.shape) print(image1.dtype) im = Image.fromarray(np.uint8(image1)) #參考numpy和圖片的互轉(zhuǎn):http://blog.csdn.net/zywvvd/article/details/72810360 im.show() if __name__ == '__main__': main()
輸出是
(2, 224, 224, 3) [[1] [2]] 第一張圖片的三種顯示(略)
封裝成函數(shù):
# -*- coding: utf-8 -*- """ Created on Fri Sep 8 14:38:15 2017 @author: wayne """ ''' 本文參考了以下代碼,在多個不同大小圖片存取方面做了重新開發(fā): https://github.com/chiphuyen/stanford-tensorflow-tutorials/blob/master/examples/09_tfrecord_example.py http://blog.csdn.net/hjxu2016/article/details/76165559 https://stackoverflow.com/questions/41921746/tensorflow-varlenfeature-vs-fixedlenfeature https://github.com/tensorflow/tensorflow/issues/10492 后續(xù): -存入多個TFrecords文件的例子見 http://blog.csdn.net/xierhacker/article/details/72357651 -如何作shuffle和數(shù)據(jù)增強 string_input_producer (需要理解tf的數(shù)據(jù)流,標簽隊列的工作方式等等) http://blog.csdn.net/liuchonge/article/details/73649251 ''' from PIL import Image import numpy as np import matplotlib.pyplot as plt import tensorflow as tf IMAGE_PATH = 'test/' tfrecord_file = IMAGE_PATH + 'test.tfrecord' writer = tf.python_io.TFRecordWriter(tfrecord_file) def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def get_image_binary(filename): """ You can read in the image using tensorflow too, but it's a drag since you have to create graphs. It's much easier using Pillow and NumPy """ image = Image.open(filename) image = np.asarray(image, np.uint8) shape = np.array(image.shape, np.int32) return shape, image.tobytes() # convert image to raw data bytes in the array. def write_to_tfrecord(label, shape, binary_image, tfrecord_file): """ This example is to write a sample to TFRecord file. If you want to write more samples, just use a loop. """ # write label, shape, and image content to the TFRecord file example = tf.train.Example(features=tf.train.Features(feature={ 'label': _int64_feature(label), 'h': _int64_feature(shape[0]), 'w': _int64_feature(shape[1]), 'c': _int64_feature(shape[2]), 'image': _bytes_feature(binary_image) })) writer.write(example.SerializeToString()) def write_tfrecord(label, image_file, tfrecord_file): shape, binary_image = get_image_binary(image_file) write_to_tfrecord(label, shape, binary_image, tfrecord_file) def read_and_decode(tfrecords_file, batch_size): '''''read and decode tfrecord file, generate (image, label) batches Args: tfrecords_file: the directory of tfrecord file batch_size: number of images in each batch Returns: image: 4D tensor - [batch_size, width, height, channel] label: 1D tensor - [batch_size] ''' # make an input queue from the tfrecord file filename_queue = tf.train.string_input_producer([tfrecord_file]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) img_features = tf.parse_single_example( serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'h': tf.FixedLenFeature([], tf.int64), 'w': tf.FixedLenFeature([], tf.int64), 'c': tf.FixedLenFeature([], tf.int64), 'image': tf.FixedLenFeature([], tf.string), }) h = tf.cast(img_features['h'], tf.int32) w = tf.cast(img_features['w'], tf.int32) c = tf.cast(img_features['c'], tf.int32) image = tf.decode_raw(img_features['image'], tf.uint8) image = tf.reshape(image, [h, w, c]) label = tf.cast(img_features['label'],tf.int32) label = tf.reshape(label, [1]) ########################################################## # you can put data augmentation here # distorted_image = tf.random_crop(images, [530, 530, img_channel]) # distorted_image = tf.image.random_flip_left_right(distorted_image) # distorted_image = tf.image.random_brightness(distorted_image, max_delta=63) # distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8) # distorted_image = tf.image.resize_images(distorted_image, (imagesize,imagesize)) # float_image = tf.image.per_image_standardization(distorted_image) image = tf.image.resize_images(image, (224,224)) image = tf.reshape(image, [224, 224, 3]) #image, label = tf.train.batch([image, label], batch_size= batch_size) image_batch, label_batch = tf.train.batch([image, label], batch_size= batch_size, num_threads= 64, capacity = 2000) return image_batch, tf.reshape(label_batch, [batch_size]) def read_tfrecord2(tfrecord_file, batch_size): train_batch, train_label_batch = read_and_decode(tfrecord_file, batch_size) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) train_batch, train_label_batch = sess.run([train_batch, train_label_batch]) coord.request_stop() coord.join(threads) return train_batch, train_label_batch def main(): # assume the image has the label Chihuahua, which corresponds to class number 1 label = [1,2] image_files = [IMAGE_PATH + 'a.jpg', IMAGE_PATH + 'b.jpg'] for i in range(2): write_tfrecord(label[i], image_files[i], tfrecord_file) writer.close() batch_size = 2 # read_tfrecord(tfrecord_file) # 讀取一個圖 train_batch, train_label_batch = read_tfrecord2(tfrecord_file, batch_size) print(train_batch.shape) print(train_label_batch) plt.figure() plt.imshow(train_batch[0,:,:,0]) plt.show() plt.figure() plt.imshow(train_batch[0,:,:,1]) plt.show() train_batch2 = train_batch[0,:,:,:] print(train_batch.shape) print(train_batch2.dtype) im = Image.fromarray(np.uint8(train_batch2)) #參考numpy和圖片的互轉(zhuǎn):http://blog.csdn.net/zywvvd/article/details/72810360 im.show() if __name__ == '__main__': main()
感謝你能夠認真閱讀完這篇文章,希望小編分享的“TensorFLow如何實現(xiàn)不同大小圖片的TFrecords存取”這篇文章對大家有幫助,同時也希望大家多多支持創(chuàng)新互聯(lián)成都網(wǎng)站設(shè)計公司,關(guān)注創(chuàng)新互聯(lián)成都網(wǎng)站設(shè)計公司行業(yè)資訊頻道,更多相關(guān)知識等著你來學(xué)習(xí)!
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、網(wǎng)站設(shè)計器、香港服務(wù)器、美國服務(wù)器、虛擬主機、免備案服務(wù)器”等云主機租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務(wù)可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場景需求。
文章標題:TensorFLow如何實現(xiàn)不同大小圖片的TFrecords存取-創(chuàng)新互聯(lián)
標題URL:http://jinyejixie.com/article42/dhcoec.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站設(shè)計公司、App開發(fā)、靜態(tài)網(wǎng)站、外貿(mào)網(wǎng)站建設(shè)、網(wǎng)頁設(shè)計公司、品牌網(wǎng)站建設(shè)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)