成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

如果20萬用戶同時(shí)訪問一個(gè)熱點(diǎn)緩存,如何優(yōu)化你的緩存架構(gòu)?-創(chuàng)新互聯(lián)

目錄

創(chuàng)新互聯(lián)公司-云計(jì)算及IDC服務(wù)提供商,涵蓋公有云、IDC機(jī)房租用、西信服務(wù)器托管、等保安全、私有云建設(shè)等企業(yè)級(jí)互聯(lián)網(wǎng)基礎(chǔ)服務(wù),歡迎聯(lián)系:18980820575

(1)為什么要用緩存集群

(2)20萬用戶同時(shí)訪問一個(gè)熱點(diǎn)緩存的問題

(3)基于流式計(jì)算技術(shù)的緩存熱點(diǎn)自動(dòng)發(fā)現(xiàn)

(4)熱點(diǎn)緩存自動(dòng)加載為JVM本地緩存

(5)限流熔斷保護(hù)

(6)總結(jié)

(1)為什么要用緩存集群

這篇文章,咱們來聊聊熱點(diǎn)緩存的架構(gòu)優(yōu)化問題。

其實(shí)使用緩存集群的時(shí)候,最怕的就是熱key、大value這兩種情況,那啥叫熱key大value呢?

簡單來說,熱key,就是你的緩存集群中的某個(gè)key瞬間被數(shù)萬甚至十萬的并發(fā)請求打爆。

大value,就是你的某個(gè)key對(duì)應(yīng)的value可能有GB級(jí)的大小,導(dǎo)致查詢value的時(shí)候?qū)е戮W(wǎng)絡(luò)相關(guān)的故障問題。

這篇文章,我們就來聊聊熱key問題。先來看看下面的一幅圖。

簡單來說,假設(shè)你手頭有個(gè)系統(tǒng),他本身是集群部署的,然后后面有一套緩存集群,這個(gè)集群不管你用redis cluster,還是memcached,或者是公司自研緩存集群,都可以。

如果20萬用戶同時(shí)訪問一個(gè)熱點(diǎn)緩存,如何優(yōu)化你的緩存架構(gòu)?

那么,這套系統(tǒng)用緩存集群干什么呢?

很簡單了,在緩存里放一些平時(shí)不怎么變動(dòng)的數(shù)據(jù),然后用戶在查詢大量的平時(shí)不怎么變動(dòng)的數(shù)據(jù)的時(shí)候,不就可以直接從緩存里走了嗎?

緩存集群的并發(fā)能力是很強(qiáng)的,而且讀緩存的性能是很高的。

舉個(gè)例子,假設(shè)你每秒有2萬請求,但是其中90%都是讀請求,那么每秒1.8萬請求都是在讀一些不太變化的數(shù)據(jù),而不是寫數(shù)據(jù)。

那此時(shí)你把數(shù)據(jù)都放在數(shù)據(jù)庫里,然后每秒發(fā)送2萬請求到數(shù)據(jù)庫上讀寫數(shù)據(jù),你覺得合適嗎?

當(dāng)然不太合適了,如果你要用數(shù)據(jù)庫承載每秒2萬請求的話,那么不好意思,你很可能就得搞分庫分表 + 讀寫分離。

比如你得分3個(gè)主庫,承載每秒2000的寫入請求,然后每個(gè)主庫掛3個(gè)從庫,一共9個(gè)從庫承載每秒1.8萬的讀請求。

這樣的話,你可能就需要一共是12臺(tái)高配置的數(shù)據(jù)庫服務(wù)器,這是很耗費(fèi)錢的,成本非常高,而且很不合適。

大家看看下面的圖,來體會(huì)下這種情況。

如果20萬用戶同時(shí)訪問一個(gè)熱點(diǎn)緩存,如何優(yōu)化你的緩存架構(gòu)?

所以,此時(shí)你完全就可以把平時(shí)不太變化的數(shù)據(jù)放在緩存集群里,緩存集群可以采用2主2從,主節(jié)點(diǎn)用來寫入緩存,從節(jié)點(diǎn)用來讀緩存。

以緩存集群的性能,2個(gè)從節(jié)點(diǎn)完全可以用來承載每秒1.8萬的大量讀了,然后3個(gè)數(shù)據(jù)庫主庫就是承載每秒2000的寫請求和少量其他讀請求就可以了。

大家看看下面的圖,你耗費(fèi)的機(jī)器瞬間變成了4臺(tái)緩存機(jī)器 + 3臺(tái)數(shù)據(jù)庫機(jī)器 = 7臺(tái)機(jī)器,是不是比之前的12臺(tái)機(jī)器減少了很大的資源開銷?

沒錯(cuò),緩存其實(shí)在系統(tǒng)架構(gòu)里是非常重要的組成部分。很多時(shí)候,對(duì)于那些很少變化但是大量高并發(fā)讀的數(shù)據(jù),通過緩存集群來抗高并發(fā)讀,是非常合適的。

如果20萬用戶同時(shí)訪問一個(gè)熱點(diǎn)緩存,如何優(yōu)化你的緩存架構(gòu)?

這里所有的機(jī)器數(shù)量、并發(fā)請求量都是一個(gè)示例,大家主要是體會(huì)一下這個(gè)意思就好,其目的主要是給一些不太熟悉緩存相關(guān)技術(shù)的同學(xué)一點(diǎn)背景性的闡述,讓這些同學(xué)能夠理解在系統(tǒng)里用緩存集群承載讀請求是什么意思。

(2)20萬用戶同時(shí)訪問一個(gè)熱點(diǎn)緩存的問題

好了,背景是已經(jīng)給大家解釋清楚了,那么現(xiàn)在就可以給大家說說今天重點(diǎn)要討論的問題:熱點(diǎn)緩存

我們來做一個(gè)假設(shè),你現(xiàn)在有10個(gè)緩存節(jié)點(diǎn)來抗大量的讀請求。正常情況下,讀請求應(yīng)該是均勻的落在10個(gè)緩存節(jié)點(diǎn)上的,對(duì)吧!

這10個(gè)緩存節(jié)點(diǎn),每秒承載1萬請求是差不多的。

然后我們再做一個(gè)假設(shè),你一個(gè)節(jié)點(diǎn)承載2萬請求是極限,所以一般你就限制一個(gè)節(jié)點(diǎn)正常承載1萬請求就ok了,稍微留一點(diǎn)buffer出來。

好,所謂的熱點(diǎn)緩存問題是什么意思呢?

很簡單,就是突然因?yàn)槟脑?,出現(xiàn)大量的用戶訪問同一條緩存數(shù)據(jù)。

舉個(gè)例子,某個(gè)明星突然宣布跟某某結(jié)婚,這個(gè)時(shí)候是不是會(huì)引發(fā)可能短時(shí)間內(nèi)每秒都是數(shù)十萬的用戶去查看這個(gè)明星跟某某結(jié)婚的那條新聞?

那么假設(shè)那條新聞就是一個(gè)緩存,然后對(duì)應(yīng)就是一個(gè)緩存key,就存在一臺(tái)緩存機(jī)器上,此時(shí)瞬時(shí)假設(shè)有20萬請求奔向那一臺(tái)機(jī)器上的一個(gè)key。

此時(shí)會(huì)如何?我們看看下面的圖,來體會(huì)一下這種絕望的感受。

如果20萬用戶同時(shí)訪問一個(gè)熱點(diǎn)緩存,如何優(yōu)化你的緩存架構(gòu)?

這個(gè)時(shí)候很明顯了,我們剛才假設(shè)的是一個(gè)緩存Slave節(jié)點(diǎn)最多每秒就是2萬的請求,當(dāng)然實(shí)際緩存單機(jī)承載5萬~10萬讀請求也是可能的,我們這里就是一個(gè)假設(shè)。

結(jié)果此時(shí),每秒突然奔過來20萬請求到這臺(tái)機(jī)器上,會(huì)怎么樣?

很簡單,上面圖里那臺(tái)被20萬請求指向的緩存機(jī)器會(huì)過度操勞而宕機(jī)的。

那么如果緩存集群開始出現(xiàn)機(jī)器的宕機(jī),此時(shí)會(huì)如何?

接著,讀請求發(fā)現(xiàn)讀不到數(shù)據(jù),會(huì)從數(shù)據(jù)庫里提取原始數(shù)據(jù),然后放入剩余的其他緩存機(jī)器里去。但是接踵而來的每秒20萬請求,會(huì)再次壓垮其他的緩存機(jī)器。

以此類推,最終導(dǎo)致緩存集群全盤崩潰,引發(fā)系統(tǒng)整體宕機(jī)。

咱們看看下面的圖,再感受一下這個(gè)恐怖的現(xiàn)場。

如果20萬用戶同時(shí)訪問一個(gè)熱點(diǎn)緩存,如何優(yōu)化你的緩存架構(gòu)?

(3)基于流式計(jì)算技術(shù)的緩存熱點(diǎn)自動(dòng)

其實(shí)這里關(guān)鍵的一點(diǎn),就是對(duì)于這種熱點(diǎn)緩存,你的系統(tǒng)需要能夠在熱點(diǎn)緩存突然發(fā)生的時(shí)候,直接發(fā)現(xiàn)他,然后瞬間立馬實(shí)現(xiàn)毫秒級(jí)的自動(dòng)負(fù)載均衡。

那么我們就先來說說,你如何自動(dòng)發(fā)現(xiàn)熱點(diǎn)緩存問題?

首先你要知道,一般出現(xiàn)緩存熱點(diǎn)的時(shí)候,你的每秒并發(fā)肯定是很高的,可能每秒都幾十萬甚至上百萬的請求量過來,這都是有可能的。

所以,此時(shí)完全可以基于大數(shù)據(jù)領(lǐng)域的流式計(jì)算技術(shù)來進(jìn)行實(shí)時(shí)數(shù)據(jù)訪問次數(shù)的統(tǒng)計(jì),比如storm、spark streaming、flink,這些技術(shù)都是可以的。

然后一旦在實(shí)時(shí)數(shù)據(jù)訪問次數(shù)統(tǒng)計(jì)的過程中,比如發(fā)現(xiàn)一秒之內(nèi),某條數(shù)據(jù)突然訪問次數(shù)超過了1000,就直接立馬把這條數(shù)據(jù)判定為是熱點(diǎn)數(shù)據(jù),可以將這個(gè)發(fā)現(xiàn)出來的熱點(diǎn)數(shù)據(jù)寫入比如zookeeper中。

當(dāng)然,你的系統(tǒng)如何判定熱點(diǎn)數(shù)據(jù),可以根據(jù)自己的業(yè)務(wù)還有經(jīng)驗(yàn)值來就可以了。

大家看看下面這張圖,看看整個(gè)流程是如何進(jìn)行的。

如果20萬用戶同時(shí)訪問一個(gè)熱點(diǎn)緩存,如何優(yōu)化你的緩存架構(gòu)?

當(dāng)然肯定有人會(huì)問,那你的流式計(jì)算系統(tǒng)在進(jìn)行數(shù)據(jù)訪問次數(shù)統(tǒng)計(jì)的時(shí)候,會(huì)不會(huì)也存在說單臺(tái)機(jī)器被請求每秒幾十萬次的問題呢?

答案是,因?yàn)榱魇接?jì)算技術(shù),尤其是storm這種系統(tǒng),他可以做到同一條數(shù)據(jù)的請求過來,先分散在很多機(jī)器里進(jìn)行本地計(jì)算,最后再匯總局部計(jì)算結(jié)果到一臺(tái)機(jī)器進(jìn)行全局匯總。

所以幾十萬請求可以先分散在比如100臺(tái)機(jī)器上,每臺(tái)機(jī)器統(tǒng)計(jì)了這條數(shù)據(jù)的幾千次請求。

然后100條局部計(jì)算好的結(jié)果匯總到一臺(tái)機(jī)器做全局計(jì)算即可,所以基于流式計(jì)算技術(shù)來進(jìn)行統(tǒng)計(jì)是不會(huì)有熱點(diǎn)問題的。

如果20萬用戶同時(shí)訪問一個(gè)熱點(diǎn)緩存,如何優(yōu)化你的緩存架構(gòu)?

(4)熱點(diǎn)緩存自動(dòng)加載為JVM本地緩存

我們自己的系統(tǒng)可以對(duì)zookeeper指定的熱點(diǎn)緩存對(duì)應(yīng)的znode進(jìn)行監(jiān)聽,如果有變化他立馬就可以感知到了。

此時(shí)系統(tǒng)層就可以立馬把相關(guān)的緩存數(shù)據(jù)從數(shù)據(jù)庫加載出來,然后直接放在自己系統(tǒng)內(nèi)部的本地緩存里即可。

這個(gè)本地緩存,你用ehcache、hashmap,其實(shí)都可以,一切都看自己的業(yè)務(wù)需求,主要說的就是將緩存集群里的集中式緩存,直接變成每個(gè)系統(tǒng)自己本地實(shí)現(xiàn)緩存即可,每個(gè)系統(tǒng)自己本地是無法緩存過多數(shù)據(jù)的。

因?yàn)橐话氵@種普通系統(tǒng)單實(shí)例部署機(jī)器可能就一個(gè)4核8G的機(jī)器,留給本地緩存的空間是很少的,所以用來放這種熱點(diǎn)數(shù)據(jù)的本地緩存是最合適的,剛剛好。

假設(shè)你的系統(tǒng)層集群部署了100臺(tái)機(jī)器,那么好了,此時(shí)你100臺(tái)機(jī)器瞬間在本地都會(huì)有一份熱點(diǎn)緩存的副本。

然后接下來對(duì)熱點(diǎn)緩存的讀操作,直接系統(tǒng)本地緩存讀出來就給返回了,不用再走緩存集群了。

這樣的話,也不可能允許每秒20萬的讀請求到達(dá)緩存機(jī)器的一臺(tái)機(jī)器上讀一個(gè)熱點(diǎn)緩存了,而是變成100臺(tái)機(jī)器每臺(tái)機(jī)器承載數(shù)千請求,那么那數(shù)千請求就直接從機(jī)器本地緩存返回?cái)?shù)據(jù)了,這是沒有問題的。

我們再來畫一幅圖,一起來看看這個(gè)過程:

如果20萬用戶同時(shí)訪問一個(gè)熱點(diǎn)緩存,如何優(yōu)化你的緩存架構(gòu)?

(5)限流熔斷保護(hù)

除此之外,在每個(gè)系統(tǒng)內(nèi)部,其實(shí)還應(yīng)該專門加一個(gè)對(duì)熱點(diǎn)數(shù)據(jù)訪問的限流熔斷保護(hù)措施。

每個(gè)系統(tǒng)實(shí)例內(nèi)部,都可以加一個(gè)熔斷保護(hù)機(jī)制,假設(shè)緩存集群最多每秒承載4萬讀請求,那么你一共有100個(gè)系統(tǒng)實(shí)例。

你自己就該限制好,每個(gè)系統(tǒng)實(shí)例每秒最多請求緩存集群讀操作不超過400次,一超過就可以熔斷掉,不讓請求緩存集群,直接返回一個(gè)空白信息,然后用戶稍后會(huì)自行再次重新刷新頁面之類的。

通過系統(tǒng)層自己直接加限流熔斷保護(hù)措施,可以很好的保護(hù)后面的緩存集群、數(shù)據(jù)庫集群之類的不要被打死,我們來看看下面的圖。

如果20萬用戶同時(shí)訪問一個(gè)熱點(diǎn)緩存,如何優(yōu)化你的緩存架構(gòu)?

(6)本文總結(jié)

具體要不要在系統(tǒng)里實(shí)現(xiàn)這種復(fù)雜的緩存熱點(diǎn)優(yōu)化架構(gòu)呢?這個(gè)還要看你們自己的系統(tǒng)有沒有這種場景了。

如果你的系統(tǒng)有熱點(diǎn)緩存問題,那么就要實(shí)現(xiàn)類似本文的復(fù)雜熱點(diǎn)緩存支撐架構(gòu)。

但是如果沒有的話,那么也別過度設(shè)計(jì),其實(shí)你的系統(tǒng)可能根本不需要這么復(fù)雜的架構(gòu)。

如果是后者,那么大伙兒就權(quán)當(dāng)看看本文,來了解一下對(duì)應(yīng)的架構(gòu)思想好了^_^

原文鏈接:https://mp.weixin.qq.com/s/RqBla4rg8ut3zEBKhyBo1w

分享文章:如果20萬用戶同時(shí)訪問一個(gè)熱點(diǎn)緩存,如何優(yōu)化你的緩存架構(gòu)?-創(chuàng)新互聯(lián)
標(biāo)題來源:http://jinyejixie.com/article40/gijho.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站排名、營銷型網(wǎng)站建設(shè)定制網(wǎng)站、網(wǎng)站策劃、微信小程序網(wǎng)頁設(shè)計(jì)公司

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

成都定制網(wǎng)站網(wǎng)頁設(shè)計(jì)
贡山| 房山区| 邹平县| 宁化县| 响水县| 宁化县| 宁陵县| 浑源县| 革吉县| 大石桥市| 容城县| 梓潼县| 麻城市| 汝阳县| 昌吉市| 兴城市| 吉林省| 沁阳市| 龙山县| 西乡县| 海伦市| 库伦旗| 昆山市| 富锦市| 长春市| 晋州市| 扶风县| 凯里市| 扶沟县| 中牟县| 太仓市| 务川| 且末县| 靖安县| 克东县| 通辽市| 墨竹工卡县| 嘉兴市| 中西区| 政和县| 陕西省|