本文小編為大家詳細(xì)介紹“Python中的np.vstack()和np.hstack()如何使用”,內(nèi)容詳細(xì),步驟清晰,細(xì)節(jié)處理妥當(dāng),希望這篇“Python中的np.vstack()和np.hstack()如何使用”文章能幫助大家解決疑惑,下面跟著小編的思路慢慢深入,一起來學(xué)習(xí)新知識吧。
專注于為中小企業(yè)提供網(wǎng)站建設(shè)、成都網(wǎng)站建設(shè)服務(wù),電腦端+手機(jī)端+微信端的三站合一,更高效的管理,為中小企業(yè)魯山免費(fèi)做網(wǎng)站提供優(yōu)質(zhì)的服務(wù)。我們立足成都,凝聚了一批互聯(lián)網(wǎng)行業(yè)人才,有力地推動了1000+企業(yè)的穩(wěn)健成長,幫助中小企業(yè)通過網(wǎng)站建設(shè)實(shí)現(xiàn)規(guī)模擴(kuò)充和轉(zhuǎn)變。
在這里我們介紹兩個拼接數(shù)組的方法:
np.vstack():在豎直方向上堆疊
np.hstack():在水平方向上平鋪
import numpy as np arr1=np.array([1,2,3]) arr2=np.array([4,5,6]) print np.vstack((arr1,arr2)) print np.hstack((arr1,arr2)) a1=np.array([[1,2],[3,4],[5,6]]) a2=np.array([[7,8],[9,10],[11,12]]) print a1 print a2 print np.hstack((a1,a2))
結(jié)果如下:
[[1 2 3]
[4 5 6]]
[1 2 3 4 5 6]
[[1 2]
[3 4]
[5 6]]
[[ 7 8]
[ 9 10]
[11 12]]
[[ 1 2 7 8]
[ 3 4 9 10]
[ 5 6 11 12]]
這里還需要強(qiáng)調(diào)一點(diǎn),在hstack應(yīng)用的時(shí)候,我在做cs231n上的assignment1的時(shí)候,我總是在hstack這里出錯!才發(fā)現(xiàn)我以前學(xué)的很膚淺??!
(1)np.hstack()
函數(shù)原型:numpy.hstack(tup)
其中tup是arrays序列,tup: sequence of ndarrays
The arrays must have the same shape along all but the second axis,except 1-D arrays which can be any length.
等價(jià)于:np.concatenate(tup, axis=1)
例子一:
import numpy as np brr1=np.array([1,2,3,4,55,6,7,77,8,9,99]) brr1_folds=np.array_split(brr1,3) print brr1_folds print brr1_folds[0:2]+brr1_folds[1:3] print np.hstack((brr1_folds[:2]+brr1_folds[1:3])) print brr1_folds[0:2] print brr1_folds[1:3] #print np.hstack((brr1_folds[0:2],brr1_folds[1:3]))
最后一行如果不注釋掉就會出錯;
[array([1, 2, 3, 4]), array([55, 6, 7, 77]), array([ 8, 9, 99])]
[array([1, 2, 3, 4]), array([55, 6, 7, 77]), array([55, 6, 7, 77]), array([ 8, 9, 99])]
[ 1 2 3 4 55 6 7 77 55 6 7 77 8 9 99]
[array([1, 2, 3, 4]), array([55, 6, 7, 77])]
[array([55, 6, 7, 77]), array([ 8, 9, 99])]
錯誤的原因就是以為我的array的維度不一致。改成+就好啦,加號是list的拼接!
例子二:
print np.hstack(([1,2,3,3,4],[3,4,5,8,6,6,7]))
結(jié)果是:表明了一維的數(shù)組hstack是隨意的。
[1 2 3 3 4 3 4 5 8 6 6 7]
例子三:
表明我們的hstack必須要第二維度是一樣的:
print np.hstack(([1,2,3,3,4],[3,4,5,8,6,6,7])) print np.hstack(([[1,2,3],[2,3,4]],[[1,2],[2,3]]))
結(jié)果:
[1 2 3 3 4 3 4 5 8 6 6 7]
[[1 2 3 1 2][2 3 4 2 3]]
如果你把上面改成下面就會報(bào)錯了?。?!
print np.hstack(([1,2,3,3,4],[3,4,5,8,6,6,7])) print np.hstack(([[1,2,3],[2,3,4]],[[1,2]]))
(2)np.vstack()
函數(shù)原型:numpy.hstack(tup)
tup: sequence of ndarrays
The arrays must have the same shape along all but the first axis.1-D arrays must have the same length.
表示我們除了第一維可以不一樣外,其他的維度上必須相同的shape。一維的數(shù)組必須大小一樣。
例子一:
print np.vstack(([1,2,3],[3,4,3])) print np.vstack(([1,2,3],[2,3]))
但是你要注意的是第二行是出錯的!
例子二:
print np.vstack(([[1,2,3],[3,4,3]],[[1,3,4],[2,4,5]])) print np.vstack(([[1,2,3],[3,4,3]],[[3,4],[4,5]]))
同樣的表明了,如果我們的數(shù)組的第二維不一樣所以出錯了。
print np.vstack(([[1,2,3],[3,4,3]],[[2,4,5]])) print np.vstack(([[1,2,3],[3,4,3]],[[4,5]]))
例子三:
我們傳入的是list:
import numpy as np arr1=np.array([[1,2],[2,4],[11,33],[2,44],[55,77],[11,22],[55,67],[67,89]]) arr11=np.array([[11,2,3],[22,3,4],[4,5,6]]) arr1_folds=np.array_split(arr1,3) print arr1_folds print np.vstack(arr1_folds)
結(jié)果:
[array([[ 1, 2],
[ 2, 4],
[11, 33]]), array([[ 2, 44],
[55, 77],
[11, 22]]), array([[55, 67],
[67, 89]])]
[[ 1 2]
[ 2 4]
[11 33]
[ 2 44]
[55 77]
[11 22]
[55 67]
[67 89]]
讀到這里,這篇“Python中的np.vstack()和np.hstack()如何使用”文章已經(jīng)介紹完畢,想要掌握這篇文章的知識點(diǎn)還需要大家自己動手實(shí)踐使用過才能領(lǐng)會,如果想了解更多相關(guān)內(nèi)容的文章,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道。
當(dāng)前文章:Python中的np.vstack()和np.hstack()如何使用
鏈接地址:http://jinyejixie.com/article4/iehgie.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供服務(wù)器托管、網(wǎng)站收錄、電子商務(wù)、做網(wǎng)站、手機(jī)網(wǎng)站建設(shè)、網(wǎng)站設(shè)計(jì)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)