成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

nosql重復(fù)判斷,nosql最終一致性

目前哪些NoSQL數(shù)據(jù)庫(kù)應(yīng)用廣泛,各有什么特點(diǎn)

特點(diǎn):

我們提供的服務(wù)有:成都做網(wǎng)站、網(wǎng)站制作、微信公眾號(hào)開(kāi)發(fā)、網(wǎng)站優(yōu)化、網(wǎng)站認(rèn)證、魚(yú)臺(tái)ssl等。為成百上千家企事業(yè)單位解決了網(wǎng)站和推廣的問(wèn)題。提供周到的售前咨詢(xún)和貼心的售后服務(wù),是有科學(xué)管理、有技術(shù)的魚(yú)臺(tái)網(wǎng)站制作公司

它們可以處理超大量的數(shù)據(jù)。

它們運(yùn)行在便宜的PC服務(wù)器集群上。

PC集群擴(kuò)充起來(lái)非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。

它們擊碎了性能瓶頸。

NoSQL的支持者稱(chēng),通過(guò)NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時(shí)間,執(zhí)行速度變得更快。

“SQL并非適用于所有的程序代碼,” 對(duì)于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢(qián)。但是當(dāng)數(shù)據(jù)庫(kù)結(jié)構(gòu)非常簡(jiǎn)單時(shí),SQL可能沒(méi)有太大用處。

沒(méi)有過(guò)多的操作。

雖然NoSQL的支持者也承認(rèn)關(guān)系數(shù)據(jù)庫(kù)提供了無(wú)可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對(duì)穩(wěn)定,他們同時(shí)也表示,企業(yè)的具體需求可能沒(méi)有那么多。

Bootstrap支持

因?yàn)镹oSQL項(xiàng)目都是開(kāi)源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點(diǎn)它們與大多數(shù)開(kāi)源項(xiàng)目一樣,不得不從社區(qū)中尋求支持。

優(yōu)點(diǎn):

易擴(kuò)展

NoSQL數(shù)據(jù)庫(kù)種類(lèi)繁多,但是一個(gè)共同的特點(diǎn)都是去掉關(guān)系數(shù)據(jù)庫(kù)的關(guān)系型特性。數(shù)據(jù)之間無(wú)關(guān)系,這樣就非常容易擴(kuò)展。也無(wú)形之間,在架構(gòu)的層面上帶來(lái)了可擴(kuò)展的能力。

大數(shù)據(jù)量,高性能

NoSQL數(shù)據(jù)庫(kù)都具有非常高的讀寫(xiě)性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無(wú)關(guān)系性,數(shù)據(jù)庫(kù)的結(jié)構(gòu)簡(jiǎn)單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對(duì)web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級(jí)的,是一種細(xì)粒度的Cache,所以NoSQL在這個(gè)層面上來(lái)說(shuō)就要性能高很多了。

靈活的數(shù)據(jù)模型

NoSQL無(wú)需事先為要存儲(chǔ)的數(shù)據(jù)建立字段,隨時(shí)可以存儲(chǔ)自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫(kù)里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡(jiǎn)直就是一個(gè)噩夢(mèng)。這點(diǎn)在大數(shù)據(jù)量的web2.0時(shí)代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實(shí)現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過(guò)復(fù)制模型也能實(shí)現(xiàn)高可用。

主要應(yīng)用:

Apache HBase

這個(gè)大數(shù)據(jù)管理平臺(tái)建立在谷歌強(qiáng)大的BigTable管理引擎基礎(chǔ)上。作為具有開(kāi)源、Java編碼、分布式多個(gè)優(yōu)勢(shì)的數(shù)據(jù)庫(kù),Hbase最初被設(shè)計(jì)應(yīng)用于Hadoop平臺(tái),而這一強(qiáng)大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺(tái)的龐大數(shù)據(jù)。

Apache Storm

用于處理高速、大型數(shù)據(jù)流的分布式實(shí)時(shí)計(jì)算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實(shí)時(shí)數(shù)據(jù)處理功能,同時(shí)還增加了低延遲的儀表板、安全警報(bào),改進(jìn)了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機(jī)會(huì)、發(fā)展新業(yè)務(wù)。

Apache Spark

該技術(shù)采用內(nèi)存計(jì)算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢(xún),此外還融合數(shù)據(jù)倉(cāng)庫(kù)、流處理和圖計(jì)算等多種計(jì)算范式,Spark用Scala語(yǔ)言實(shí)現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運(yùn)行速度比MapReduce快100倍。

Apache Hadoop

該技術(shù)迅速成為了大數(shù)據(jù)管理標(biāo)準(zhǔn)之一。當(dāng)它被用來(lái)管理大型數(shù)據(jù)集時(shí),對(duì)于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺(tái)的靈活性使它可以運(yùn)行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。

Apache Drill

你有多大的數(shù)據(jù)集?其實(shí)無(wú)論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對(duì)。通過(guò)支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺(tái),允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。

Apache Sqoop

也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個(gè)問(wèn)題。這一平臺(tái)采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫(kù)系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類(lèi)型以及元數(shù)據(jù)傳播的映射。事實(shí)上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。

Apache Giraph

這是功能強(qiáng)大的圖形處理平臺(tái),具有很好可擴(kuò)展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運(yùn)行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過(guò)這種方式,你可以得到強(qiáng)大的分布式作圖能力,同時(shí)還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。

Cloudera Impala

Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢(xún)。該技術(shù)和MapReduce一樣,具有強(qiáng)大的批處理能力,而且Impala對(duì)于實(shí)時(shí)的SQL查詢(xún)也有很好的效果,通過(guò)高效的SQL查詢(xún),你可以很快的了解到大數(shù)據(jù)平臺(tái)上的數(shù)據(jù)。

Gephi

它可以用來(lái)對(duì)信息進(jìn)行關(guān)聯(lián)和量化處理,通過(guò)為數(shù)據(jù)創(chuàng)建功能強(qiáng)大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個(gè)圖表類(lèi)型,而且可以在具有上百萬(wàn)個(gè)節(jié)點(diǎn)的大型網(wǎng)絡(luò)上運(yùn)行。Gephi具有活躍的用戶(hù)社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對(duì)復(fù)雜的IT連接、分布式系統(tǒng)中各個(gè)節(jié)點(diǎn)、數(shù)據(jù)流等信息進(jìn)行可視化分析。

MongoDB

這個(gè)堅(jiān)實(shí)的平臺(tái)一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個(gè)應(yīng)用開(kāi)源技術(shù)開(kāi)發(fā)的NoSQL數(shù)據(jù)庫(kù),可以用于在JSON這樣的平臺(tái)上存儲(chǔ)和處理數(shù)據(jù)。目前,紐約時(shí)報(bào)、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個(gè)參考)。

十大頂尖公司:

Amazon Web Services

Forrester將AWS稱(chēng)為“云霸主”,談到云計(jì)算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱(chēng)為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來(lái)提供大數(shù)據(jù)管理服務(wù),但它不是純開(kāi)源Hadoop,經(jīng)過(guò)修改后現(xiàn)在被專(zhuān)門(mén)用在AWS云上。

Forrester稱(chēng)EMR有很好的市場(chǎng)前景。很多公司基于EMR為客戶(hù)提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢(xún)、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱(chēng)未來(lái)EMR可以基于工作量的需要自動(dòng)縮放調(diào)整大小。亞馬遜計(jì)劃為其產(chǎn)品和服務(wù)提供更強(qiáng)大的EMR支持,包括它的RedShift數(shù)據(jù)倉(cāng)庫(kù)、新公布的Kenesis實(shí)時(shí)處理引擎以及計(jì)劃中的NoSQL數(shù)據(jù)庫(kù)和商業(yè)智能工具。不過(guò)AWS還沒(méi)有自己的Hadoop發(fā)行版。

Cloudera

Cloudera有開(kāi)源Hadoop的發(fā)行版,這個(gè)發(fā)行版采用了Apache Hadoop開(kāi)源項(xiàng)目的很多技術(shù),不過(guò)基于這些技術(shù)的發(fā)行版也有很大的進(jìn)步。Cloudera為它的Hadoop發(fā)行版開(kāi)發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開(kāi)源Hadoop,但也不是純開(kāi)源的產(chǎn)品。當(dāng)Cloudera的客戶(hù)需要Hadoop不具備的某些功能時(shí),Cloudera的工程師們就會(huì)實(shí)現(xiàn)這些功能,或者找一個(gè)擁有這項(xiàng)技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因?yàn)槠淇蓪?shí)現(xiàn)快速創(chuàng)新并積極滿足客戶(hù)需求,這一點(diǎn)使它不同于其他那些供應(yīng)商?!蹦壳?,Cloudera的平臺(tái)已經(jīng)擁有200多個(gè)付費(fèi)客戶(hù),一些客戶(hù)在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個(gè)節(jié)點(diǎn)實(shí)現(xiàn)對(duì)PB級(jí)數(shù)據(jù)的有效管理。

Hortonworks

和Cloudera一樣,Hortonworks是一個(gè)純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅(jiān)信開(kāi)源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強(qiáng)大。Hortonworks的目標(biāo)是建立Hadoop生態(tài)圈和Hadoop用戶(hù)社區(qū),推進(jìn)開(kāi)源項(xiàng)目的發(fā)展。Hortonworks平臺(tái)和開(kāi)源Hadoop聯(lián)系緊密,公司管理人員表示這會(huì)給用戶(hù)帶來(lái)好處,因?yàn)樗梢苑乐贡还?yīng)商套牢(如果Hortonworks的客戶(hù)想要離開(kāi)這個(gè)平臺(tái),他們可以輕松轉(zhuǎn)向其他開(kāi)源平臺(tái))。這并不是說(shuō)Hortonworks完全依賴(lài)開(kāi)源Hadoop技術(shù),而是因?yàn)樵摴緦⑵渌虚_(kāi)發(fā)的成果回報(bào)給了開(kāi)源社區(qū),比如Ambari,這個(gè)工具就是由Hortonworks開(kāi)發(fā)而成,用來(lái)填充集群管理項(xiàng)目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。

IBM

當(dāng)企業(yè)考慮一些大的IT項(xiàng)目時(shí),很多人首先會(huì)想到IBM。IBM是Hadoop項(xiàng)目的主要參與者之一,F(xiàn)orrester稱(chēng)IBM已有100多個(gè)Hadoop部署,它的很多客戶(hù)都有PB級(jí)的數(shù)據(jù)。IBM在網(wǎng)格計(jì)算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項(xiàng)目實(shí)施等眾多領(lǐng)域有著豐富的經(jīng)驗(yàn)?!癐BM計(jì)劃繼續(xù)整合SPSS分析、高性能計(jì)算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對(duì)高性能計(jì)算的工作負(fù)載管理等眾多技術(shù)?!?/p>

Intel

和AWS類(lèi)似,英特爾不斷改進(jìn)和優(yōu)化Hadoop使其運(yùn)行在自己的硬件上,具體來(lái)說(shuō),就是讓Hadoop運(yùn)行在其至強(qiáng)芯片上,幫助用戶(hù)打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個(gè)產(chǎn)品,所以公司在未來(lái)還有很多改進(jìn)的可能,英特爾和微軟都被認(rèn)為是Hadoop市場(chǎng)上的潛力股。

MapR Technologies

MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過(guò)很多人可能都沒(méi)有聽(tīng)說(shuō)過(guò)。Forrester對(duì)Hadoop用戶(hù)的調(diào)查顯示,MapR的評(píng)級(jí)最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說(shuō)MapR在Hadoop市場(chǎng)上沒(méi)有Cloudera和Hortonworks那樣的知名度,MapR要成為一個(gè)真正的大企業(yè),還需要加強(qiáng)伙伴關(guān)系和市場(chǎng)營(yíng)銷(xiāo)。

Microsoft

微軟在開(kāi)源軟件問(wèn)題上一直很低調(diào),但在大數(shù)據(jù)形勢(shì)下,它不得不考慮讓W(xué)indows也兼容Hadoop,它還積極投入到開(kāi)源項(xiàng)目中,以更廣泛地推動(dòng)Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。

微軟也有一些其他的項(xiàng)目,包括名為Polybase的項(xiàng)目,讓Hadoop查詢(xún)實(shí)現(xiàn)了SQLServer查詢(xún)的一些功能。Forrester說(shuō):“微軟在數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開(kāi)發(fā)工具市場(chǎng)上有很大優(yōu)勢(shì),而且微軟擁有龐大的用戶(hù)群,但要在Hadoop這個(gè)領(lǐng)域成為行業(yè)領(lǐng)導(dǎo)者還有很遠(yuǎn)的路要走?!?/p>

Pivotal Software

EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個(gè)性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開(kāi)源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個(gè)名為HAWQ的SQL引擎以及一個(gè)專(zhuān)門(mén)解決大數(shù)據(jù)問(wèn)題的Hadoop應(yīng)用。Forrester稱(chēng)Pivotal Hadoop平臺(tái)的優(yōu)勢(shì)在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢(shì)實(shí)際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶(hù)還不到100個(gè),而且大多是中小型客戶(hù)。

Teradata

對(duì)于Teradata來(lái)說(shuō),Hadoop既是一種威脅也是一種機(jī)遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫(kù)這一領(lǐng)域是Teradata的專(zhuān)長(zhǎng)。所以像Hadoop這樣的NoSQL平臺(tái)崛起可能會(huì)威脅到Teradata。相反,Teradata接受了Hadoop,通過(guò)與Hortonworks合作,Teradata在Hadoop平臺(tái)集成了SQL技術(shù),這使Teradata的客戶(hù)可以在Hadoop平臺(tái)上方便地使用存儲(chǔ)在Teradata數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)。

AMPLab

通過(guò)將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔ⅲ覀儾趴梢岳斫馐澜?,而這也正是AMPLab所做的。AMPLab致力于機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘、數(shù)據(jù)庫(kù)、信息檢索、自然語(yǔ)言處理和語(yǔ)音識(shí)別等多個(gè)領(lǐng)域,努力改進(jìn)對(duì)信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開(kāi)源分布式SQL查詢(xún)引擎Shark也源于AMPLab,Shark具有極高的查詢(xún)效率,具有良好的兼容性和可擴(kuò)展性。近幾年的發(fā)展使計(jì)算機(jī)科學(xué)進(jìn)入到全新的時(shí)代,而AMPLab為我們?cè)O(shè)想一個(gè)運(yùn)用大數(shù)據(jù)、云計(jì)算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對(duì)越來(lái)越復(fù)雜的各種難題。

什么是New SQL?分析NewSQL是如何融合NoSQL和RDBMS兩者的優(yōu)勢(shì)

NewSQL是對(duì)一類(lèi)現(xiàn)代關(guān)系型數(shù)據(jù)庫(kù)的統(tǒng)稱(chēng),這類(lèi)數(shù)據(jù)庫(kù)對(duì)于一般的OLTP讀寫(xiě)請(qǐng)求提供可橫向擴(kuò)展的性能,同時(shí)支持事務(wù)的ACID保證。這些系統(tǒng)既擁有NoSQL數(shù)據(jù)庫(kù)的擴(kuò)展性,又保持傳統(tǒng)數(shù)據(jù)庫(kù)的事務(wù)特性。NewSQL重新將“應(yīng)用程序邏輯與數(shù)據(jù)操作邏輯應(yīng)該分離”的理念帶回到現(xiàn)代數(shù)據(jù)庫(kù)的世界,這也驗(yàn)證了歷史的發(fā)展總是呈現(xiàn)出螺旋上升的形式。

在21世紀(jì)00年代中,出現(xiàn)了許多數(shù)據(jù)倉(cāng)庫(kù)系統(tǒng) (如 Vertica,Greeplum 和AsterData),這些以處理OLAP 請(qǐng)求為設(shè)計(jì)目標(biāo)的系統(tǒng)并不在本文定義的NewSQL范圍內(nèi)。OLAP 數(shù)據(jù)庫(kù)更關(guān)注針對(duì)海量數(shù)據(jù)的大型、復(fù)雜、只讀的查詢(xún),查詢(xún)時(shí)間可能持續(xù)秒級(jí)、分鐘級(jí)甚至更長(zhǎng)。

NoSQL的擁躉普遍認(rèn)為阻礙傳統(tǒng)數(shù)據(jù)庫(kù)橫向擴(kuò)容、提高可用性的原因在于ACID保證和關(guān)系模型,因此NoSQL運(yùn)動(dòng)的核心就是放棄事務(wù)強(qiáng)一致性以及關(guān)系模型,擁抱最終一致性和其它數(shù)據(jù)模型?(如 key/value,graphs 和Documents)。

兩個(gè)最著名的NoSQL數(shù)據(jù)庫(kù)就是Google的BigTable和Amazon的Dynamo,由于二者都未開(kāi)源,其它組織就開(kāi)始推出類(lèi)似的開(kāi)源替代項(xiàng)目,包括Facebook的 Cassandra (基于BigTable和Dynamo)、PowerSet的 Hbase(基于BigTable)。有一些創(chuàng)業(yè)公司也加入到這場(chǎng)NoSQL運(yùn)動(dòng)中,它們不一定是受BigTable和Dynamo的啟發(fā),但都響應(yīng)了NoSQL的哲學(xué),其中最出名的就是MongoDB。

在21世紀(jì)00年代末,市面上已經(jīng)有許多供用戶(hù)選擇的分布式數(shù)據(jù)庫(kù)產(chǎn)品。使用NoSQL的優(yōu)勢(shì)在于應(yīng)用開(kāi)發(fā)者可以更關(guān)注應(yīng)用邏輯本身,而非數(shù)據(jù)庫(kù)的擴(kuò)展性問(wèn)題;但與此同時(shí)許多應(yīng)用,如金融系統(tǒng)、訂單處理系統(tǒng),由于無(wú)法放棄事務(wù)的一致性要求被拒之門(mén)外。

一些組織,如Google,已經(jīng)發(fā)現(xiàn)他們的許多工程師將過(guò)多的精力放在處理數(shù)據(jù)一致性上,這既暴露了數(shù)據(jù)庫(kù)的抽象、又提高了代碼的復(fù)雜度,這時(shí)候要么選擇回到傳統(tǒng)DBMS時(shí)代,用更高的機(jī)器配置縱向擴(kuò)容,要么選擇回到中間件時(shí)代,開(kāi)發(fā)支持分布式事務(wù)的中間件。這兩種方案成本都很高,于是NewSQL運(yùn)動(dòng)開(kāi)始醞釀。

NewSQL數(shù)據(jù)庫(kù)設(shè)計(jì)針對(duì)的讀寫(xiě)事務(wù)有以下特點(diǎn):

1、耗時(shí)短。

2、使用索引查詢(xún),涉及少量數(shù)據(jù)。

3、重復(fù)度高,通常使用相同的查詢(xún)語(yǔ)句和不同的查詢(xún)參考。

也有一些學(xué)者認(rèn)為NewSQL系統(tǒng)是特指實(shí)現(xiàn)上使用Lock-free并發(fā)控制技術(shù)和share-nothing架構(gòu)的數(shù)據(jù)庫(kù)。所有我們認(rèn)為是NewSQL的數(shù)據(jù)庫(kù)系統(tǒng)確實(shí)都有這樣的特點(diǎn)。

NoSQL解決方案為什么需要固態(tài)硬盤(pán)

Membase

Membase 是 NoSQL 家族的一個(gè)新的重量級(jí)的成員。Membase是開(kāi)源項(xiàng)目,源代碼采用了Apache2.0的使用許可。該項(xiàng)目托管在GitHub.Source tarballs上,可以下載beta版本的Linux二進(jìn)制包。該產(chǎn)品主要是由North Scale的memcached核心團(tuán)隊(duì)成員開(kāi)發(fā)完成,其中還包括Zynga和NHN這兩個(gè)主要貢獻(xiàn)者的工程師,這兩個(gè)組織都是很大的在線游戲和社區(qū)網(wǎng)絡(luò)空間的供應(yīng)商。

Membase容易安裝、操作,可以從單節(jié)點(diǎn)方便的擴(kuò)展到集群,而且為memcached(有線協(xié)議的兼容性)實(shí)現(xiàn)了即插即用功能,在應(yīng)用方面為開(kāi)發(fā)者和經(jīng)營(yíng)者提供了一個(gè)比較低的門(mén)檻。做為緩存解決方案,Memcached已經(jīng)在不同類(lèi)型的領(lǐng)域(特別是大容量的Web應(yīng)用)有了廣泛的使用,其中 Memcached的部分基礎(chǔ)代碼被直接應(yīng)用到了Membase服務(wù)器的前端。

通過(guò)兼容多種編程語(yǔ)言和框架,Membase具備了很好的復(fù)用性。在安裝和配置方面,Membase提供了有效的圖形化界面和編程接口,包括可配置 的告警信息。

Membase的目標(biāo)是提供對(duì)外的線性擴(kuò)展能力,包括為了增加集群容量,可以針對(duì)統(tǒng)一的節(jié)點(diǎn)進(jìn)行復(fù)制。 另外,對(duì)存儲(chǔ)的數(shù)據(jù)進(jìn)行再分配仍然是必要的。

這方面的一個(gè)有趣的特性是NoSQL解決方案所承諾的可預(yù)測(cè)的性能,類(lèi)準(zhǔn)確性的延遲和吞吐量。通過(guò)如下方式可以獲得上面提到的特性:

◆ 自動(dòng)將在線數(shù)據(jù)遷移到低延遲的存儲(chǔ)介質(zhì)的技術(shù)(內(nèi)存,固態(tài)硬盤(pán),磁盤(pán))

◆ 可選的寫(xiě)操作一一異步,同步(基于復(fù)制,持久化)

◆ 反向通道再平衡[未來(lái)考慮支持]

◆ 多線程低鎖爭(zhēng)用

◆ 盡可能使用異步處理

◆ 自動(dòng)實(shí)現(xiàn)重復(fù)數(shù)據(jù)刪除

◆ 動(dòng)態(tài)再平衡現(xiàn)有集群

◆ 通過(guò)把數(shù)據(jù)復(fù)制到多個(gè)集群?jiǎn)卧椭С挚焖偈∞D(zhuǎn)移來(lái)提供系統(tǒng)的高可用性。

MongoDB

MongoDB是一個(gè)介于關(guān)系數(shù)據(jù)庫(kù)和非關(guān)系數(shù)據(jù)庫(kù)之間的產(chǎn)品,是非關(guān)系數(shù)據(jù)庫(kù)當(dāng)中功能最豐富,最像關(guān)系數(shù)據(jù)庫(kù)的。他支持的數(shù)據(jù)結(jié)構(gòu)非常松散,是類(lèi)似json的bjson格式,因此可以存儲(chǔ)比較復(fù)雜的數(shù)據(jù)類(lèi)型。Mongo最大的特點(diǎn)是他支持的查詢(xún)語(yǔ)言非常強(qiáng)大,其語(yǔ)法有點(diǎn)類(lèi)似于面向?qū)ο蟮牟樵?xún)語(yǔ)言,幾乎可以實(shí)現(xiàn)類(lèi)似關(guān)系數(shù)據(jù)庫(kù)單表查詢(xún)的絕大部分功能,而且還支持對(duì)數(shù)據(jù)建立索引。它的特點(diǎn)是高性能、易部署、易使用,存儲(chǔ)數(shù)據(jù)非常方便。

主要功能特性:

◆ 面向集合存儲(chǔ),易存儲(chǔ)對(duì)象類(lèi)型的數(shù)據(jù)

“面向集合”(Collenction-Oriented),意思是數(shù)據(jù)被分組存儲(chǔ)在數(shù)據(jù)集中,被稱(chēng)為一個(gè)集合(Collenction)。每個(gè) 集合在數(shù)據(jù)庫(kù)中都有一個(gè)唯一的標(biāo)識(shí)名,并且可以包含無(wú)限數(shù)目的文檔。集合的概念類(lèi)似關(guān)系型數(shù)據(jù)庫(kù)(RDBMS)里的表(table),不同的是它不需要定 義任何模式(schema)。

◆ 模式自由

模式自由(schema-free),意味著對(duì)于存儲(chǔ)在mongodb數(shù)據(jù)庫(kù)中的文件,我們不需要知道它的任何結(jié)構(gòu)定義。如果需要的話,你完全可以把不同結(jié)構(gòu)的文件存儲(chǔ)在同一個(gè)數(shù)據(jù)庫(kù)里。

◆支持動(dòng)態(tài)查詢(xún)

◆支持完全索引,包含內(nèi)部對(duì)象

◆支持查詢(xún)

◆支持復(fù)制和故障恢復(fù)

◆使用高效的二進(jìn)制數(shù)據(jù)存儲(chǔ),包括大型對(duì)象(如視頻等)

◆自動(dòng)處理碎片,以支持云計(jì)算層次的擴(kuò)展性

◆支持RUBY,PYTHON,JAVA,C++,PHP等多種語(yǔ)言

◆文件存儲(chǔ)格式為BSON(一種JSON的擴(kuò)展)

BSON(Binary Serialized document Format)存儲(chǔ)形式是指:存儲(chǔ)在集合中的文檔,被存儲(chǔ)為鍵-值對(duì)的形式。鍵用于唯一標(biāo)識(shí)一個(gè)文檔,為字符串類(lèi)型,而值則可以是各種復(fù)雜的文件類(lèi)型。

◆可通過(guò)網(wǎng)絡(luò)訪問(wèn)

MongoDB服務(wù)端可運(yùn)行在Linux、Windows或OS X平臺(tái),支持32位和64位應(yīng)用,默認(rèn)端口為27017。推薦運(yùn)行在64位平臺(tái),因?yàn)镸ongoDB在32位模式運(yùn)行時(shí)支持的最大文件尺寸為2GB。

MongoDB把數(shù)據(jù)存儲(chǔ)在文件中(默認(rèn)路徑為:/data/db),為提高效率使用內(nèi)存映射文件進(jìn)行管理。

Hypertable

Hypertable是一個(gè)開(kāi)源、高性能、可伸縮的數(shù)據(jù)庫(kù),它采用與Google的Bigtable相似的模型。在過(guò)去數(shù)年中,Google為在PC集群 上運(yùn)行的可伸縮計(jì)算基礎(chǔ)設(shè)施設(shè)計(jì)建造了三個(gè)關(guān)鍵部分。第一個(gè)關(guān)鍵的基礎(chǔ)設(shè)施是Google File System(GFS),這是一個(gè)高可用的文件系統(tǒng),提供了一個(gè)全局的命名空間。它通過(guò)跨機(jī)器(和跨機(jī)架)的文件數(shù)據(jù)復(fù)制來(lái)達(dá)到高可用性,并因此免受傳統(tǒng) 文件存儲(chǔ)系統(tǒng)無(wú)法避免的許多失敗的影響,比如電源、內(nèi)存和網(wǎng)絡(luò)端口等失敗。第二個(gè)基礎(chǔ)設(shè)施是名為Map-Reduce的計(jì)算框架,它與GFS緊密協(xié)作,幫 助處理收集到的海量數(shù)據(jù)。第三個(gè)基礎(chǔ)設(shè)施是Bigtable,它是傳統(tǒng)數(shù)據(jù)庫(kù)的替代。Bigtable讓你可以通過(guò)一些主鍵來(lái)組織海量數(shù)據(jù),并實(shí)現(xiàn)高效的 查詢(xún)。Hypertable是Bigtable的一個(gè)開(kāi)源實(shí)現(xiàn),并且根據(jù)我們的想法進(jìn)行了一些改進(jìn)。

Apache Cassandra

Apache Cassandra是一套開(kāi)源分布式Key-Value存儲(chǔ)系統(tǒng)。它最初由Facebook開(kāi)發(fā),用于儲(chǔ)存特別大的數(shù)據(jù)。Facebook在使用此系統(tǒng)。

主要特性:

◆ 分布式

◆ 基于column的結(jié)構(gòu)化

◆ 高伸展性

Cassandra的主要特點(diǎn)就是它不是一個(gè)數(shù)據(jù)庫(kù),而是由一堆數(shù)據(jù)庫(kù)節(jié)點(diǎn)共同構(gòu)成的一個(gè)分布式網(wǎng)絡(luò)服務(wù),對(duì)Cassandra 的一個(gè)寫(xiě)操作,會(huì)被復(fù)制到其他節(jié)點(diǎn)上去,對(duì)Cassandra的讀操作,也會(huì)被路由到某個(gè)節(jié)點(diǎn)上面去讀取。對(duì)于一個(gè)Cassandra群集來(lái)說(shuō),擴(kuò)展性能 是比較簡(jiǎn)單的事情,只管在群集里面添加節(jié)點(diǎn)就可以了。

Cassandra是一個(gè)混合型的非關(guān)系的數(shù)據(jù)庫(kù),類(lèi)似于Google的BigTable。其主要功能比 Dynomite(分布式的Key-Value存 儲(chǔ)系統(tǒng))更豐富,但支持度卻不如文檔存儲(chǔ)MongoDB(介于關(guān)系數(shù)據(jù)庫(kù)和非關(guān)系數(shù)據(jù)庫(kù)之間的開(kāi)源產(chǎn)品,是非關(guān)系數(shù)據(jù)庫(kù)當(dāng)中功能最豐富,最像關(guān)系數(shù)據(jù)庫(kù) 的。Cassandra最初由Facebook開(kāi)發(fā),后轉(zhuǎn)變成了開(kāi)源項(xiàng)目。它是一個(gè)網(wǎng)絡(luò)社交云計(jì)算方面理想的數(shù)據(jù)庫(kù)。以Amazon專(zhuān)有的完全分布式的Dynamo為基礎(chǔ),結(jié)合了Google BigTable基于列族(Column Family)的數(shù)據(jù)模型。P2P去中心化的存儲(chǔ)。很多方面都可以稱(chēng)之為Dynamo 2.0。

CouchDB

所用語(yǔ)言: Erlang

特點(diǎn):DB一致性,易于使用

使用許可: Apache

協(xié)議: HTTP/REST

雙向數(shù)據(jù)復(fù)制,持續(xù)進(jìn)行或臨時(shí)處理,處理時(shí)帶沖突檢查,因此,采用的是master-master復(fù)制

MVCC – 寫(xiě)操作不阻塞讀操作

可保存文件之前的版本

Crash-only(可靠的)設(shè)計(jì)

需要不時(shí)地進(jìn)行數(shù)據(jù)壓縮

視圖:嵌入式 映射/減少

格式化視圖:列表顯示

支持進(jìn)行服務(wù)器端文檔驗(yàn)證

支持認(rèn)證

根據(jù)變化實(shí)時(shí)更新

支持附件處理

因此, CouchApps(獨(dú)立的 js應(yīng)用程序)

需要 jQuery程序庫(kù)

最佳應(yīng)用場(chǎng)景:適用于數(shù)據(jù)變化較少,執(zhí)行預(yù)定義查詢(xún),進(jìn)行數(shù)據(jù)統(tǒng)計(jì)的應(yīng)用程序。適用于需要提供數(shù)據(jù)版本支持的應(yīng)用程序。

例如:CRM、CMS系統(tǒng)。 master-master復(fù)制對(duì)于多站點(diǎn)部署是非常有用的。

和其他數(shù)據(jù)庫(kù)比較,其突出特點(diǎn)是:

◆ 模式靈活 :使用Cassandra,像文檔存儲(chǔ),你不必提前解決記錄中的字段。你可以在系統(tǒng)運(yùn)行時(shí)隨意的添加或移除字段。這是一個(gè)驚人的效率提升,特別是在大型部 署上。

◆ 真正的可擴(kuò)展性 :Cassandra是純粹意義上的水平擴(kuò)展。為給集群添加更多容量,可以指向另一臺(tái)電腦。你不必重啟任何進(jìn)程,改變應(yīng)用查詢(xún),或手動(dòng)遷移任何數(shù)據(jù)。

◆ 多數(shù)據(jù)中心識(shí)別 :你可以調(diào)整你的節(jié)點(diǎn)布局來(lái)避免某一個(gè)數(shù)據(jù)中心起火,一個(gè)備用的數(shù)據(jù)中心將至少有每條記錄的完全復(fù)制。

◆ 范圍查詢(xún) :如果你不喜歡全部的鍵值查詢(xún),則可以設(shè)置鍵的范圍來(lái)查詢(xún)。

◆ 列表數(shù)據(jù)結(jié)構(gòu) :在混合模式可以將超級(jí)列添加到5維。對(duì)于每個(gè)用戶(hù)的索引,這是非常方便的。

◆ 分布式寫(xiě)操作 :有可以在任何地方任何時(shí)間集中讀或?qū)懭魏螖?shù)據(jù)。并且不會(huì)有任何單點(diǎn)失敗。

問(wèn)度娘,啥都有。

如何選擇NoSQL數(shù)據(jù)庫(kù)

NoSQL,指的是非關(guān)系型的數(shù)據(jù)庫(kù)。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫(kù)在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的

SNS類(lèi)型的web2.0純動(dòng)態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問(wèn)題,而非關(guān)系型的數(shù)據(jù)庫(kù)則由于其本身的特點(diǎn)得到了非常迅速的發(fā)展。

NoSQL(NoSQL

= Not Only SQL

),意即“不僅僅是SQL”,是一項(xiàng)全新的數(shù)據(jù)庫(kù)革命性運(yùn)動(dòng),早期就有人提出,發(fā)展至2009年趨勢(shì)越發(fā)高漲。NoSQL的擁護(hù)者們提倡運(yùn)用非關(guān)系型的數(shù)

據(jù)存儲(chǔ),相對(duì)于鋪天蓋地的關(guān)系型數(shù)據(jù)庫(kù)運(yùn)用,這一概念無(wú)疑是一種全新的思維的注入。

從這一新興技術(shù)中選擇一款正確的NoSQL數(shù)據(jù)庫(kù)是非常具有挑戰(zhàn)性的。比一下網(wǎng)建議在選擇時(shí)考慮以下因素:

并發(fā)控制

發(fā)控制指的是當(dāng)多個(gè)用戶(hù)同時(shí)更新運(yùn)行時(shí),用于保護(hù)數(shù)據(jù)庫(kù)完整性的各種技術(shù)。并發(fā)機(jī)制不正確可能導(dǎo)致臟讀、幻讀和不可重復(fù)讀等此類(lèi)問(wèn)題。并發(fā)控制的目的是保

證一個(gè)用戶(hù)的工作不會(huì)對(duì)另一個(gè)用戶(hù)的工作產(chǎn)生不合理的影響。在某些情況下,這些措施保證了當(dāng)用戶(hù)和其他用戶(hù)一起操作時(shí),所得的結(jié)果和她單獨(dú)操作時(shí)的結(jié)果是

一樣的。在另一些情況下,這表示用戶(hù)的工作按預(yù)定的方式受其他用戶(hù)的影響。

封鎖

就是事務(wù)T在對(duì)某個(gè)數(shù)據(jù)對(duì)象(例如表、記錄等)操作之前,先向系統(tǒng)發(fā)出請(qǐng)求,對(duì)其加鎖。加鎖后事務(wù)T就對(duì)該數(shù)據(jù)對(duì)象有了一定的控制,在事務(wù)T釋放它的鎖之前,其它的事務(wù)不能更新此數(shù)據(jù)對(duì)象。

封鎖是一次只允許一個(gè)用戶(hù)讀取或修改的一種機(jī)制,是實(shí)現(xiàn)并發(fā)控制的一個(gè)非常重要的技術(shù)。

MVCC

Multi-Version Concurrency Control多版本并發(fā)控制,維持一個(gè)數(shù)據(jù)的多個(gè)版本使讀寫(xiě)操作沒(méi)有沖突。MVCC優(yōu)化了數(shù)據(jù)庫(kù)并發(fā)系統(tǒng),使系統(tǒng)在有大量并發(fā)用戶(hù)時(shí)得到最高的性能,并且可以不用關(guān)閉服務(wù)器就直接進(jìn)行熱備份。

ACID

數(shù)據(jù)庫(kù)事務(wù)正確執(zhí)行的四個(gè)基本要素的縮寫(xiě)。包含:原子性(Atomicity)、一致性(Consistency)、隔離性(Isolation)、持久

性(Durability)。一個(gè)支持事務(wù)(Transaction)的數(shù)據(jù)庫(kù)系統(tǒng),必需要具有這四種特性,否則在事務(wù)過(guò)程(Transaction

processing)當(dāng)中無(wú)法保證數(shù)據(jù)的正確性,交易過(guò)程極可能達(dá)不到交易方的要求。

None

一些系統(tǒng)不提供原子性。

鏡像

數(shù)據(jù)庫(kù)鏡像是DBMS根據(jù)DBA的要求,自動(dòng)把整個(gè)數(shù)據(jù)庫(kù)或其中的關(guān)鍵數(shù)據(jù)復(fù)制到另一個(gè)磁盤(pán)上,每當(dāng)主數(shù)據(jù)庫(kù)更新時(shí),DBMS會(huì)自動(dòng)把更新后的數(shù)據(jù)復(fù)制過(guò)去,即DBMS自動(dòng)保證鏡像數(shù)據(jù)與主數(shù)據(jù)的一致性。

鏡像分為同步和異步。

數(shù)據(jù)存儲(chǔ)

指的是數(shù)據(jù)的物理特性怎樣被存儲(chǔ)在數(shù)據(jù)庫(kù)中。

磁盤(pán) 數(shù)據(jù)被存儲(chǔ)在硬盤(pán)驅(qū)動(dòng)器里;

GFS或谷歌文件系統(tǒng)是一個(gè)由谷歌開(kāi)發(fā)的專(zhuān)有的分布式文件系統(tǒng);

Hadoop是Apache軟件框架,免費(fèi)許可下支持?jǐn)?shù)據(jù)密集型分布式應(yīng)用程序;

RAM隨機(jī)存儲(chǔ)器;

插件 可以添加外部插件;

Amazon S3通過(guò)Web服務(wù)接口提供存儲(chǔ);

BDB:BDB

全稱(chēng)是 “Berkeley DB”,它是MySQL具有事務(wù)能力的表類(lèi)型,由Sleepycat

Software開(kāi)發(fā)。BDB表類(lèi)型提供了MySQL用戶(hù)長(zhǎng)久期盼的功能,即事務(wù)控制能力。在任何RDBMS中,事務(wù)控制能力都是一種極其重要和寶貴的功

能。事務(wù)控制能力使得我們能夠確保一組命令確實(shí)已經(jīng)全部執(zhí)行成功,或者確保當(dāng)任何一個(gè)命令出現(xiàn)錯(cuò)誤時(shí)所有命令的執(zhí)行結(jié)果均被退回。

實(shí)現(xiàn)語(yǔ)言

實(shí)現(xiàn)語(yǔ)言會(huì)影響數(shù)據(jù)庫(kù)的發(fā)展速度。典型的NoSQL數(shù)據(jù)庫(kù)是用低級(jí)語(yǔ)言如C / C + +編寫(xiě)的。另一方面,那些更高層次的語(yǔ)言如Java,使自定義更容易。

實(shí)現(xiàn)語(yǔ)言有:C, C++, Erlang, Java, Python

特性

考慮下列哪一個(gè)特點(diǎn)對(duì)你的數(shù)據(jù)庫(kù)是最重要的:

持久性

可用性

一致性

分區(qū)容忍性

證書(shū)類(lèi)型

下面這些許可證是一個(gè)不同的開(kāi)放源碼許可的形式:

GPL:通用公共許可證

BSD:伯克利軟件分發(fā)

MPL:Mozilla公共許可證

EPL:Eclipse公共許可證

IDPL:最初的開(kāi)發(fā)者的公共許可證

LGPL:較寬松通用公共許可證

存儲(chǔ)類(lèi)型

存儲(chǔ)類(lèi)型是NoSQL數(shù)據(jù)庫(kù)最大的不同,是決定使用哪款數(shù)據(jù)庫(kù)的一個(gè)首要指標(biāo)。

關(guān)鍵字:支持get、put和刪除操作

按列存儲(chǔ):相對(duì)于傳統(tǒng)的按行存儲(chǔ),數(shù)據(jù)集成容易多了

面向文件系統(tǒng):存儲(chǔ)像是JSON或XML這樣的結(jié)構(gòu)化文件,很容易就能從面向?qū)ο筌浖蝎@取數(shù)據(jù)。

NoSQL-HDFS-基本概念

Hadoop

文件系統(tǒng):文件系統(tǒng)是用來(lái)存儲(chǔ)和管理文件,并且提供文件的查詢(xún)、增加、刪除等操作。

直觀上的體驗(yàn):在shell窗口輸入 ls 命令,就可以看到當(dāng)前目錄下的文件夾、文件。

文件存儲(chǔ)在哪里?硬盤(pán)

一臺(tái)只有250G硬盤(pán)的電腦,如果需要存儲(chǔ)500G的文件可以怎么辦?先將電腦硬盤(pán)擴(kuò)容至少250G,再將文件分割成多塊,放到多塊硬盤(pán)上儲(chǔ)存。

通過(guò) hdfs dfs -ls 命令可以查看分布式文件系統(tǒng)中的文件,就像本地的ls命令一樣。

HDFS在客戶(hù)端上提供了查詢(xún)、新增和刪除的指令,可以實(shí)現(xiàn)將分布在多臺(tái)機(jī)器上的文件系統(tǒng)進(jìn)行統(tǒng)一的管理。

在分布式文件系統(tǒng)中,一個(gè)大文件會(huì)被切分成塊,分別存儲(chǔ)到幾臺(tái)機(jī)器上。結(jié)合上文中提到的那個(gè)存儲(chǔ)500G大文件的那個(gè)例子,這500G的文件會(huì)按照一定的大小被切分成若干塊,然后分別存儲(chǔ)在若干臺(tái)機(jī)器上,然后提供統(tǒng)一的操作接口。

看到這里,不少人可能會(huì)覺(jué)得,分布式文件系統(tǒng)不過(guò)如此,很簡(jiǎn)單嘛。事實(shí)真的是這樣的么?

潛在問(wèn)題

假如我有一個(gè)1000臺(tái)機(jī)器組成的分布式系統(tǒng),一臺(tái)機(jī)器每天出現(xiàn)故障的概率是0.1%,那么整個(gè)系統(tǒng)每天出現(xiàn)故障的概率是多大呢?答案是(1-0.1%)^1000=63%,因此需要提供一個(gè)容錯(cuò)機(jī)制來(lái)保證發(fā)生差錯(cuò)時(shí)文件依然可以讀出,這里暫時(shí)先不展開(kāi)介紹。

如果要存儲(chǔ)PB級(jí)或者EB級(jí)的數(shù)據(jù),成千上萬(wàn)臺(tái)機(jī)器組成的集群是很常見(jiàn)的,所以說(shuō)分布式系統(tǒng)比單機(jī)系統(tǒng)要復(fù)雜得多呀。

這是一張HDFS的架構(gòu)簡(jiǎn)圖:

client通過(guò)nameNode了解數(shù)據(jù)在哪些DataNode上,從而發(fā)起查詢(xún)。此外,不僅是查詢(xún)文件,寫(xiě)入文件的時(shí)候也是先去請(qǐng)教N(yùn)ameNode,看看應(yīng)該往哪個(gè)DateNode中去寫(xiě)。

為了某一份數(shù)據(jù)只寫(xiě)入到一個(gè)Datanode中,而這個(gè)Datanode因?yàn)槟承┰虺鲥e(cuò)無(wú)法讀取的問(wèn)題,需要通過(guò)冗余備份的方式來(lái)進(jìn)行容錯(cuò)處理。因此,HDFS在寫(xiě)入一個(gè)數(shù)據(jù)塊的時(shí)候,不會(huì)僅僅寫(xiě)入一個(gè)DataNode,而是會(huì)寫(xiě)入到多個(gè)DataNode中,這樣,如果其中一個(gè)DataNode壞了,還可以從其余的DataNode中拿到數(shù)據(jù),保證了數(shù)據(jù)不丟失。

實(shí)際上,每個(gè)數(shù)據(jù)塊在HDFS上都會(huì)保存多份,保存在不同的DataNode上。這種是犧牲一定存儲(chǔ)空間換取可靠性的做法。

接下來(lái)我們來(lái)看一下完整的文件寫(xiě)入的流程:

大文件要寫(xiě)入HDFS,client端根據(jù)配置將大文件分成固定大小的塊,然后再上傳到HDFS。

讀取文件的流程:

1、client詢(xún)問(wèn)NameNode,我要讀取某個(gè)路徑下的文件,麻煩告訴我這個(gè)文件都在哪些DataNode上?

2、NameNode回復(fù)client,這個(gè)路徑下的文件被切成了3塊,分別在DataNode1、DataNode3和DataNode4上

3、client去找DataNode1、DataNode3和DataNode4,拿到3個(gè)文件塊,通過(guò)stream讀取并且整合起來(lái)

文件寫(xiě)入的流程:

1、client先將文件分塊,然后詢(xún)問(wèn)NameNode,我要寫(xiě)入一個(gè)文件到某個(gè)路徑下,文件有3塊,應(yīng)該怎么寫(xiě)?

2、NameNode回復(fù)client,可以分別寫(xiě)到DataNode1、DataNode2、DataNode3、DataNode4上,記住,每個(gè)塊重復(fù)寫(xiě)3份,總共是9份

3、client找到DataNode1、DataNode2、DataNode3、DataNode4,把數(shù)據(jù)寫(xiě)到他們上面

出于容錯(cuò)的考慮,每個(gè)數(shù)據(jù)塊有3個(gè)備份,但是3個(gè)備份快都直接由client端直接寫(xiě)入勢(shì)必會(huì)帶來(lái)client端過(guò)重的寫(xiě)入壓力,這個(gè)點(diǎn)是否有更好的解決方案呢?回憶一下mysql主備之間是通過(guò)binlog文件進(jìn)行同步的,HDFS當(dāng)然也可以借鑒這個(gè)思想,數(shù)據(jù)其實(shí)只需要寫(xiě)入到一個(gè)datanode上,然后由datanode之間相互進(jìn)行備份同步,減少了client端的寫(xiě)入壓力,那么至于是一個(gè)datanode寫(xiě)入成功即成功,還是需要所有的參與備份的datanode返回寫(xiě)入成功才算成功,是可靠性配置的策略,當(dāng)然這個(gè)設(shè)置會(huì)影響到數(shù)據(jù)寫(xiě)入的吞吐率,我們可以看到可靠性和效率永遠(yuǎn)是“魚(yú)和熊掌不可兼得”的。

潛在問(wèn)題

NameNode確實(shí)會(huì)回放editlog,但是不是每次都從頭回放,它會(huì)先加載一個(gè)fsimage,這個(gè)文件是之前某一個(gè)時(shí)刻整個(gè)NameNode的文件元數(shù)據(jù)的內(nèi)存快照,然后再在這個(gè)基礎(chǔ)上回放editlog,完成后,會(huì)清空editlog,再把當(dāng)前文件元數(shù)據(jù)的內(nèi)存狀態(tài)寫(xiě)入fsimage,方便下一次加載。

這樣,全量回放就變成了增量回放,但是如果NameNode長(zhǎng)時(shí)間未重啟過(guò),editlog依然會(huì)比較大,恢復(fù)的時(shí)間依然比較長(zhǎng),這個(gè)問(wèn)題怎么解呢?

SecondNameNode是一個(gè)NameNode內(nèi)的定時(shí)任務(wù)線程,它會(huì)定期地將editlog寫(xiě)入fsimage,然后情況原來(lái)的editlog,從而保證editlog的文件大小維持在一定大小。

NameNode掛了, SecondNameNode并不能替代NameNode,所以如果集群中只有一個(gè)NameNode,它掛了,整個(gè)系統(tǒng)就掛了。hadoop2.x之前,整個(gè)集群只能有一個(gè)NameNode,是有可能發(fā)生單點(diǎn)故障的,所以hadoop1.x有本身的不穩(wěn)定性。但是hadoop2.x之后,我們可以在集群中配置多個(gè)NameNode,就不會(huì)有這個(gè)問(wèn)題了,但是配置多個(gè)NameNode,需要注意的地方就更多了,系統(tǒng)就更加復(fù)雜了。

俗話說(shuō)“一山不容二虎”,兩個(gè)NameNode只能有一個(gè)是活躍狀態(tài)active,另一個(gè)是備份狀態(tài)standby,我們看一下兩個(gè)NameNode的架構(gòu)圖。

兩個(gè)NameNode通過(guò)JournalNode實(shí)現(xiàn)同步editlog,保持狀態(tài)一致可以相互替換。

因?yàn)閍ctive的NameNode掛了之后,standby的NameNode要馬上接替它,所以它們的數(shù)據(jù)要時(shí)刻保持一致,在寫(xiě)入數(shù)據(jù)的時(shí)候,兩個(gè)NameNode內(nèi)存中都要記錄數(shù)據(jù)的元信息,并保持一致。這個(gè)JournalNode就是用來(lái)在兩個(gè)NameNode中同步數(shù)據(jù)的,并且standby NameNode實(shí)現(xiàn)了SecondNameNode的功能。

進(jìn)行數(shù)據(jù)同步操作的過(guò)程如下:

active NameNode有操作之后,它的editlog會(huì)被記錄到JournalNode中,standby NameNode會(huì)從JournalNode中讀取到變化并進(jìn)行同步,同時(shí)standby NameNode會(huì)監(jiān)聽(tīng)記錄的變化。這樣做的話就是實(shí)時(shí)同步了,并且standby NameNode就實(shí)現(xiàn)了SecondNameNode的功能。

優(yōu)點(diǎn):

缺點(diǎn):

新聞名稱(chēng):nosql重復(fù)判斷,nosql最終一致性
本文URL:http://jinyejixie.com/article4/hojjie.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供做網(wǎng)站、自適應(yīng)網(wǎng)站、ChatGPT、網(wǎng)頁(yè)設(shè)計(jì)公司App開(kāi)發(fā)、企業(yè)建站

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶(hù)投稿、用戶(hù)轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)

網(wǎng)站優(yōu)化排名
潜山县| 贵溪市| 房产| 乐陵市| 浮山县| 湘潭县| 天镇县| 吉安市| 孝昌县| 泸溪县| 蒙自县| 米林县| 秭归县| 石阡县| 安义县| 新巴尔虎左旗| 灵武市| 留坝县| 四会市| 上高县| 任丘市| 永福县| 明水县| 扬州市| 夹江县| 鸡东县| 万宁市| 大化| 上林县| 偏关县| 平原县| 府谷县| 方正县| 绍兴市| 岑巩县| 贡觉县| 枞阳县| 九江市| 光山县| 红安县| 平邑县|