php 高并發(fā)解決思路解決方案,如何應對網(wǎng)站大流量高并發(fā)情況。本文為大家總結了常用的處理方式,但不是細節(jié),后續(xù)一系列細節(jié)教程給出。希望大家喜歡。
創(chuàng)新互聯(lián)專業(yè)IDC數(shù)據(jù)服務器托管提供商,專業(yè)提供成都服務器托管,服務器租用,遂寧服務器托管,遂寧服務器托管,成都多線服務器托管等服務器托管服務。
一 高并發(fā)的概念
在互聯(lián)網(wǎng)時代,并發(fā),高并發(fā)通常是指并發(fā)訪問。也就是在某個時間點,有多少個訪問同時到來。
二 高并發(fā)架構相關概念
1、QPS (每秒查詢率) : 每秒鐘請求或者查詢的數(shù)量,在互聯(lián)網(wǎng)領域,指每秒響應請求數(shù)(指 HTTP 請求)
2、PV(Page View):綜合瀏覽量,即頁面瀏覽量或者點擊量,一個訪客在 24 小時內訪問的頁面數(shù)量
--注:同一個人瀏覽你的網(wǎng)站的同一頁面,只記做一次 pv
3、吞吐量(fetches/sec) :單位時間內處理的請求數(shù)量 (通常由 QPS 和并發(fā)數(shù)決定)
4、響應時間:從請求發(fā)出到收到響應花費的時間
5、獨立訪客(UV):一定時間范圍內,相同訪客多次訪問網(wǎng)站,只計算為 1 個獨立訪客
6、帶寬:計算帶寬需關注兩個指標,峰值流量和頁面的平均大小
7、日網(wǎng)站帶寬: PV/統(tǒng)計時間(換算到秒) * 平均頁面大?。╧b)* 8
三 需要注意點:
1、QPS 不等于并發(fā)連接數(shù)(QPS 是每秒 HTTP 請求數(shù)量,并發(fā)連接數(shù)是系統(tǒng)同時處理的請求數(shù)量)
2、峰值每秒請求數(shù)(QPS)= (總 PV 數(shù)*80%)/ (六小時秒數(shù)*20%)【代表 80%的訪問量都集中在 20%的時間內】
3、壓力測試: 測試能承受的最大并發(fā)數(shù) 以及測試最大承受的 QPS 值
4、常用的性能測試工具【ab,wrk,httpload,Web Bench,Siege,Apache JMeter】
四 優(yōu)化
1、當 QPS 小于 50 時
優(yōu)化方案:為一般小型網(wǎng)站,不用考慮優(yōu)化
2、當 QPS 達到 100 時,遇到數(shù)據(jù)查詢瓶頸
優(yōu)化方案: 數(shù)據(jù)庫緩存層,數(shù)據(jù)庫的負載均衡
3、當 QPS 達到 800 時, 遇到帶寬瓶頸
優(yōu)化方案:CDN 加速,負載均衡
4、當 QPS 達到 1000 時
優(yōu)化方案: 做 html 靜態(tài)緩存
5、當 QPS 達到 2000 時
優(yōu)化方案: 做業(yè)務分離,分布式存儲
五、高并發(fā)解決方案案例:
1、流量優(yōu)化
防盜鏈處理(去除惡意請求)
2、前端優(yōu)化
(1) 減少 HTTP 請求[將 css,js 等合并]
(2) 添加異步請求(先不將所有數(shù)據(jù)都展示給用戶,用戶觸發(fā)某個事件,才會異步請求數(shù)據(jù))
(3) 啟用瀏覽器緩存和文件壓縮
(4) CDN 加速
(5) 建立獨立的圖片服務器(減少 I/O)
3、服務端優(yōu)化
(1) 頁面靜態(tài)化
(2) 并發(fā)處理
(3) 隊列處理
4、數(shù)據(jù)庫優(yōu)化
(1) 數(shù)據(jù)庫緩存
(2) 分庫分表,分區(qū)
(3) 讀寫分離
(4) 負載均衡
5、web 服務器優(yōu)化
(1) nginx 反向代理實現(xiàn)負載均衡
(2) lvs 實現(xiàn)負載均衡
?php
2 //優(yōu)化方案1:將庫存字段number字段設為unsigned,當庫存為0時,因為字段不能為負數(shù),將會返回false
3 include('./mysql.php');
4 $username = 'wang'.rand(0,1000);
5 //生成唯一訂單
6 function build_order_no(){
7? return date('ymd').substr(implode(NULL, array_map('ord', str_split(substr(uniqid(), 7, 13), 1))), 0, 8);
8 }
9 //記錄日志
10 function insertLog($event,$type=0,$username){
11? ? global $conn;
12? ? $sql="insert into ih_log(event,type,usernma)
13? ? values('$event','$type','$username')";
14? ? return mysqli_query($conn,$sql);
15 }
16 function insertOrder($order_sn,$user_id,$goods_id,$sku_id,$price,$username,$number)
17 {
18? ? ? global $conn;
19? ? ? $sql="insert into ih_order(order_sn,user_id,goods_id,sku_id,price,username,number)
20? ? ? values('$order_sn','$user_id','$goods_id','$sku_id','$price','$username','$number')";
21? ? ? return? mysqli_query($conn,$sql);
22 }
23 //模擬下單操作
24 //庫存是否大于0
25 $sql="select number from ih_store where goods_id='$goods_id' and sku_id='$sku_id' ";
26 $rs=mysqli_query($conn,$sql);
27 $row = $rs-fetch_assoc();
28? if($row['number']0){//高并發(fā)下會導致超賣
29? ? ? if($row['number']$number){
30? ? ? ? return insertLog('庫存不夠',3,$username);
31? ? ? }
32? ? ? $order_sn=build_order_no();
33? ? ? //庫存減少
34? ? ? $sql="update ih_store set number=number-{$number} where sku_id='$sku_id' and number0";
35? ? ? $store_rs=mysqli_query($conn,$sql);
36? ? ? if($store_rs){
37? ? ? ? ? //生成訂單
38? ? ? ? ? insertOrder($order_sn,$user_id,$goods_id,$sku_id,$price,$username,$number);
39? ? ? ? ? insertLog('庫存減少成功',1,$username);
40? ? ? }else{
41? ? ? ? ? insertLog('庫存減少失敗',2,$username);
42? ? ? }
43? }else{
44? ? ? insertLog('庫存不夠',3,$username);
45? }
46 ?
以下內容轉載自徐漢彬大牛的博客?億級Web系統(tǒng)搭建——單機到分布式集群?
當一個Web系統(tǒng)從日訪問量10萬逐步增長到1000萬,甚至超過1億的過程中,Web系統(tǒng)承受的壓力會越來越大,在這個過程中,我們會遇到很多的問題。為了解決這些性能壓力帶來問題,我們需要在Web系統(tǒng)架構層面搭建多個層次的緩存機制。在不同的壓力階段,我們會遇到不同的問題,通過搭建不同的服務和架構來解決。
Web負載均衡?
Web負載均衡(Load Balancing),簡單地說就是給我們的服務器集群分配“工作任務”,而采用恰當?shù)姆峙浞绞?,對于保護處于后端的Web服務器來說,非常重要。
負載均衡的策略有很多,我們從簡單的講起哈。
1.?HTTP重定向
當用戶發(fā)來請求的時候,Web服務器通過修改HTTP響應頭中的Location標記來返回一個新的url,然后瀏覽器再繼續(xù)請求這個新url,實際上就是頁面重定向。通過重定向,來達到“負載均衡”的目標。例如,我們在下載PHP源碼包的時候,點擊下載鏈接時,為了解決不同國家和地域下載速度的問題,它會返回一個離我們近的下載地址。重定向的HTTP返回碼是302
這個重定向非常容易實現(xiàn),并且可以自定義各種策略。但是,它在大規(guī)模訪問量下,性能不佳。而且,給用戶的體驗也不好,實際請求發(fā)生重定向,增加了網(wǎng)絡延時。
2. 反向代理負載均衡
反向代理服務的核心工作主要是轉發(fā)HTTP請求,扮演了瀏覽器端和后臺Web服務器中轉的角色。因為它工作在HTTP層(應用層),也就是網(wǎng)絡七層結構中的第七層,因此也被稱為“七層負載均衡”??梢宰龇聪虼淼能浖芏啵容^常見的一種是Nginx。
Nginx是一種非常靈活的反向代理軟件,可以自由定制化轉發(fā)策略,分配服務器流量的權重等。反向代理中,常見的一個問題,就是Web服務器存儲的session數(shù)據(jù),因為一般負載均衡的策略都是隨機分配請求的。同一個登錄用戶的請求,無法保證一定分配到相同的Web機器上,會導致無法找到session的問題。
解決方案主要有兩種:
1.?配置反向代理的轉發(fā)規(guī)則,讓同一個用戶的請求一定落到同一臺機器上(通過分析cookie),復雜的轉發(fā)規(guī)則將會消耗更多的CPU,也增加了代理服務器的負擔。
2.?將session這類的信息,專門用某個獨立服務來存儲,例如redis/memchache,這個方案是比較推薦的。
反向代理服務,也是可以開啟緩存的,如果開啟了,會增加反向代理的負擔,需要謹慎使用。這種負載均衡策略實現(xiàn)和部署非常簡單,而且性能表現(xiàn)也比較好。但是,它有“單點故障”的問題,如果掛了,會帶來很多的麻煩。而且,到了后期Web服務器繼續(xù)增加,它本身可能成為系統(tǒng)的瓶頸。
3. IP負載均衡
IP負載均衡服務是工作在網(wǎng)絡層(修改IP)和傳輸層(修改端口,第四層),比起工作在應用層(第七層)性能要高出非常多。原理是,他是對IP層的數(shù)據(jù)包的IP地址和端口信息進行修改,達到負載均衡的目的。這種方式,也被稱為“四層負載均衡”。常見的負載均衡方式,是LVS(Linux Virtual Server,Linux虛擬服務),通過IPVS(IP Virtual Server,IP虛擬服務)來實現(xiàn)。
在負載均衡服務器收到客戶端的IP包的時候,會修改IP包的目標IP地址或端口,然后原封不動地投遞到內部網(wǎng)絡中,數(shù)據(jù)包會流入到實際Web服務器。實際服務器處理完成后,又會將數(shù)據(jù)包投遞回給負載均衡服務器,它再修改目標IP地址為用戶IP地址,最終回到客戶端。
上述的方式叫LVS-NAT,除此之外,還有LVS-RD(直接路由),LVS-TUN(IP隧道),三者之間都屬于LVS的方式,但是有一定的區(qū)別,篇幅問題,不贅敘。
IP負載均衡的性能要高出Nginx的反向代理很多,它只處理到傳輸層為止的數(shù)據(jù)包,并不做進一步的組包,然后直接轉發(fā)給實際服務器。不過,它的配置和搭建比較復雜。
4. DNS負載均衡
DNS(Domain Name System)負責域名解析的服務,域名url實際上是服務器的別名,實際映射是一個IP地址,解析過程,就是DNS完成域名到IP的映射。而一個域名是可以配置成對應多個IP的。因此,DNS也就可以作為負載均衡服務。
這種負載均衡策略,配置簡單,性能極佳。但是,不能自由定義規(guī)則,而且,變更被映射的IP或者機器故障時很麻煩,還存在DNS生效延遲的問題。?
5. DNS/GSLB負載均衡
我們常用的CDN(Content Delivery Network,內容分發(fā)網(wǎng)絡)實現(xiàn)方式,其實就是在同一個域名映射為多IP的基礎上更進一步,通過GSLB(Global Server Load Balance,全局負載均衡)按照指定規(guī)則映射域名的IP。一般情況下都是按照地理位置,將離用戶近的IP返回給用戶,減少網(wǎng)絡傳輸中的路由節(jié)點之間的跳躍消耗。
“向上尋找”,實際過程是LDNS(Local DNS)先向根域名服務(Root Name Server)獲取到頂級根的Name Server(例如.com的),然后得到指定域名的授權DNS,然后再獲得實際服務器IP。
CDN在Web系統(tǒng)中,一般情況下是用來解決大小較大的靜態(tài)資源(html/Js/Css/圖片等)的加載問題,讓這些比較依賴網(wǎng)絡下載的內容,盡可能離用戶更近,提升用戶體驗。
例如,我訪問了一張imgcache.gtimg.cn上的圖片(騰訊的自建CDN,不使用qq.com域名的原因是防止http請求的時候,帶上了多余的cookie信息),我獲得的IP是183.60.217.90。
這種方式,和前面的DNS負載均衡一樣,不僅性能極佳,而且支持配置多種策略。但是,搭建和維護成本非常高?;ヂ?lián)網(wǎng)一線公司,會自建CDN服務,中小型公司一般使用第三方提供的CDN。
Web系統(tǒng)的緩存機制的建立和優(yōu)化
剛剛我們講完了Web系統(tǒng)的外部網(wǎng)絡環(huán)境,現(xiàn)在我們開始關注我們Web系統(tǒng)自身的性能問題。我們的Web站點隨著訪問量的上升,會遇到很多的挑戰(zhàn),解決這些問題不僅僅是擴容機器這么簡單,建立和使用合適的緩存機制才是根本。
最開始,我們的Web系統(tǒng)架構可能是這樣的,每個環(huán)節(jié),都可能只有1臺機器。
我們從最根本的數(shù)據(jù)存儲開始看哈。
一、 MySQL數(shù)據(jù)庫內部緩存使用
MySQL的緩存機制,就從先從MySQL內部開始,下面的內容將以最常見的InnoDB存儲引擎為主。
1. 建立恰當?shù)乃饕?/p>
最簡單的是建立索引,索引在表數(shù)據(jù)比較大的時候,起到快速檢索數(shù)據(jù)的作用,但是成本也是有的。首先,占用了一定的磁盤空間,其中組合索引最突出,使用需要謹慎,它產生的索引甚至會比源數(shù)據(jù)更大。其次,建立索引之后的數(shù)據(jù)insert/update/delete等操作,因為需要更新原來的索引,耗時會增加。當然,實際上我們的系統(tǒng)從總體來說,是以select查詢操作居多,因此,索引的使用仍然對系統(tǒng)性能有大幅提升的作用。
2. 數(shù)據(jù)庫連接線程池緩存
如果,每一個數(shù)據(jù)庫操作請求都需要創(chuàng)建和銷毀連接的話,對數(shù)據(jù)庫來說,無疑也是一種巨大的開銷。為了減少這類型的開銷,可以在MySQL中配置thread_cache_size來表示保留多少線程用于復用。線程不夠的時候,再創(chuàng)建,空閑過多的時候,則銷毀。
其實,還有更為激進一點的做法,使用pconnect(數(shù)據(jù)庫長連接),線程一旦創(chuàng)建在很長時間內都保持著。但是,在訪問量比較大,機器比較多的情況下,這種用法很可能會導致“數(shù)據(jù)庫連接數(shù)耗盡”,因為建立連接并不回收,最終達到數(shù)據(jù)庫的max_connections(最大連接數(shù))。因此,長連接的用法通常需要在CGI和MySQL之間實現(xiàn)一個“連接池”服務,控制CGI機器“盲目”創(chuàng)建連接數(shù)。
建立數(shù)據(jù)庫連接池服務,有很多實現(xiàn)的方式,PHP的話,我推薦使用swoole(PHP的一個網(wǎng)絡通訊拓展)來實現(xiàn)。
3. Innodb緩存設置(innodb_buffer_pool_size)
innodb_buffer_pool_size這是個用來保存索引和數(shù)據(jù)的內存緩存區(qū),如果機器是MySQL獨占的機器,一般推薦為機器物理內存的80%。在取表數(shù)據(jù)的場景中,它可以減少磁盤IO。一般來說,這個值設置越大,cache命中率會越高。
4. 分庫/分表/分區(qū)。
MySQL數(shù)據(jù)庫表一般承受數(shù)據(jù)量在百萬級別,再往上增長,各項性能將會出現(xiàn)大幅度下降,因此,當我們預見數(shù)據(jù)量會超過這個量級的時候,建議進行分庫/分表/分區(qū)等操作。最好的做法,是服務在搭建之初就設計為分庫分表的存儲模式,從根本上杜絕中后期的風險。不過,會犧牲一些便利性,例如列表式的查詢,同時,也增加了維護的復雜度。不過,到了數(shù)據(jù)量千萬級別或者以上的時候,我們會發(fā)現(xiàn),它們都是值得的。?
二、 MySQL數(shù)據(jù)庫多臺服務搭建
1臺MySQL機器,實際上是高風險的單點,因為如果它掛了,我們Web服務就不可用了。而且,隨著Web系統(tǒng)訪問量繼續(xù)增加,終于有一天,我們發(fā)現(xiàn)1臺MySQL服務器無法支撐下去,我們開始需要使用更多的MySQL機器。當引入多臺MySQL機器的時候,很多新的問題又將產生。
1. 建立MySQL主從,從庫作為備份
這種做法純粹為了解決“單點故障”的問題,在主庫出故障的時候,切換到從庫。不過,這種做法實際上有點浪費資源,因為從庫實際上被閑著了。
2. MySQL讀寫分離,主庫寫,從庫讀。
兩臺數(shù)據(jù)庫做讀寫分離,主庫負責寫入類的操作,從庫負責讀的操作。并且,如果主庫發(fā)生故障,仍然不影響讀的操作,同時也可以將全部讀寫都臨時切換到從庫中(需要注意流量,可能會因為流量過大,把從庫也拖垮)。
3. 主主互備。
兩臺MySQL之間互為彼此的從庫,同時又是主庫。這種方案,既做到了訪問量的壓力分流,同時也解決了“單點故障”問題。任何一臺故障,都還有另外一套可供使用的服務。
不過,這種方案,只能用在兩臺機器的場景。如果業(yè)務拓展還是很快的話,可以選擇將業(yè)務分離,建立多個主主互備。
三、 MySQL數(shù)據(jù)庫機器之間的數(shù)據(jù)同步
每當我們解決一個問題,新的問題必然誕生在舊的解決方案上。當我們有多臺MySQL,在業(yè)務高峰期,很可能出現(xiàn)兩個庫之間的數(shù)據(jù)有延遲的場景。并且,網(wǎng)絡和機器負載等,也會影響數(shù)據(jù)同步的延遲。我們曾經遇到過,在日訪問量接近1億的特殊場景下,出現(xiàn),從庫數(shù)據(jù)需要很多天才能同步追上主庫的數(shù)據(jù)。這種場景下,從庫基本失去效用了。
于是,解決同步問題,就是我們下一步需要關注的點。
1. MySQL自帶多線程同步
MySQL5.6開始支持主庫和從庫數(shù)據(jù)同步,走多線程。但是,限制也是比較明顯的,只能以庫為單位。MySQL數(shù)據(jù)同步是通過binlog日志,主庫寫入到binlog日志的操作,是具有順序的,尤其當SQL操作中含有對于表結構的修改等操作,對于后續(xù)的SQL語句操作是有影響的。因此,從庫同步數(shù)據(jù),必須走單進程。
2. 自己實現(xiàn)解析binlog,多線程寫入。
以數(shù)據(jù)庫的表為單位,解析binlog多張表同時做數(shù)據(jù)同步。這樣做的話,的確能夠加快數(shù)據(jù)同步的效率,但是,如果表和表之間存在結構關系或者數(shù)據(jù)依賴的話,則同樣存在寫入順序的問題。這種方式,可用于一些比較穩(wěn)定并且相對獨立的數(shù)據(jù)表。
國內一線互聯(lián)網(wǎng)公司,大部分都是通過這種方式,來加快數(shù)據(jù)同步效率。還有更為激進的做法,是直接解析binlog,忽略以表為單位,直接寫入。但是這種做法,實現(xiàn)復雜,使用范圍就更受到限制,只能用于一些場景特殊的數(shù)據(jù)庫中(沒有表結構變更,表和表之間沒有數(shù)據(jù)依賴等特殊表)。?
四、 在Web服務器和數(shù)據(jù)庫之間建立緩存
實際上,解決大訪問量的問題,不能僅僅著眼于數(shù)據(jù)庫層面。根據(jù)“二八定律”,80%的請求只關注在20%的熱點數(shù)據(jù)上。因此,我們應該建立Web服務器和數(shù)據(jù)庫之間的緩存機制。這種機制,可以用磁盤作為緩存,也可以用內存緩存的方式。通過它們,將大部分的熱點數(shù)據(jù)查詢,阻擋在數(shù)據(jù)庫之前。
1. 頁面靜態(tài)化
用戶訪問網(wǎng)站的某個頁面,頁面上的大部分內容在很長一段時間內,可能都是沒有變化的。例如一篇新聞報道,一旦發(fā)布幾乎是不會修改內容的。這樣的話,通過CGI生成的靜態(tài)html頁面緩存到Web服務器的磁盤本地。除了第一次,是通過動態(tài)CGI查詢數(shù)據(jù)庫獲取之外,之后都直接將本地磁盤文件返回給用戶。
在Web系統(tǒng)規(guī)模比較小的時候,這種做法看似完美。但是,一旦Web系統(tǒng)規(guī)模變大,例如當我有100臺的Web服務器的時候。那樣這些磁盤文件,將會有100份,這個是資源浪費,也不好維護。這個時候有人會想,可以集中一臺服務器存起來,呵呵,不如看看下面一種緩存方式吧,它就是這樣做的。
2. 單臺內存緩存
通過頁面靜態(tài)化的例子中,我們可以知道將“緩存”搭建在Web機器本機是不好維護的,會帶來更多問題(實際上,通過PHP的apc拓展,可通過Key/value操作Web服務器的本機內存)。因此,我們選擇搭建的內存緩存服務,也必須是一個獨立的服務。
內存緩存的選擇,主要有redis/memcache。從性能上說,兩者差別不大,從功能豐富程度上說,Redis更勝一籌。
3. 內存緩存集群
當我們搭建單臺內存緩存完畢,我們又會面臨單點故障的問題,因此,我們必須將它變成一個集群。簡單的做法,是給他增加一個slave作為備份機器。但是,如果請求量真的很多,我們發(fā)現(xiàn)cache命中率不高,需要更多的機器內存呢?因此,我們更建議將它配置成一個集群。例如,類似redis cluster。
Redis cluster集群內的Redis互為多組主從,同時每個節(jié)點都可以接受請求,在拓展集群的時候比較方便。客戶端可以向任意一個節(jié)點發(fā)送請求,如果是它的“負責”的內容,則直接返回內容。否則,查找實際負責Redis節(jié)點,然后將地址告知客戶端,客戶端重新請求。
對于使用緩存服務的客戶端來說,這一切是透明的。
內存緩存服務在切換的時候,是有一定風險的。從A集群切換到B集群的過程中,必須保證B集群提前做好“預熱”(B集群的內存中的熱點數(shù)據(jù),應該盡量與A集群相同,否則,切換的一瞬間大量請求內容,在B集群的內存緩存中查找不到,流量直接沖擊后端的數(shù)據(jù)庫服務,很可能導致數(shù)據(jù)庫宕機)。
4. 減少數(shù)據(jù)庫“寫”
上面的機制,都實現(xiàn)減少數(shù)據(jù)庫的“讀”的操作,但是,寫的操作也是一個大的壓力。寫的操作,雖然無法減少,但是可以通過合并請求,來起到減輕壓力的效果。這個時候,我們就需要在內存緩存集群和數(shù)據(jù)庫集群之間,建立一個修改同步機制。
先將修改請求生效在cache中,讓外界查詢顯示正常,然后將這些sql修改放入到一個隊列中存儲起來,隊列滿或者每隔一段時間,合并為一個請求到數(shù)據(jù)庫中更新數(shù)據(jù)庫。
除了上述通過改變系統(tǒng)架構的方式提升寫的性能外,MySQL本身也可以通過配置參數(shù)innodb_flush_log_at_trx_commit來調整寫入磁盤的策略。如果機器成本允許,從硬件層面解決問題,可以選擇老一點的RAID(Redundant Arrays of independent Disks,磁盤列陣)或者比較新的SSD(Solid State Drives,固態(tài)硬盤)。
5. NoSQL存儲
不管數(shù)據(jù)庫的讀還是寫,當流量再進一步上漲,終會達到“人力有窮時”的場景。繼續(xù)加機器的成本比較高,并且不一定可以真正解決問題的時候。這個時候,部分核心數(shù)據(jù),就可以考慮使用NoSQL的數(shù)據(jù)庫。NoSQL存儲,大部分都是采用key-value的方式,這里比較推薦使用上面介紹過Redis,Redis本身是一個內存cache,同時也可以當做一個存儲來使用,讓它直接將數(shù)據(jù)落地到磁盤。
這樣的話,我們就將數(shù)據(jù)庫中某些被頻繁讀寫的數(shù)據(jù),分離出來,放在我們新搭建的Redis存儲集群中,又進一步減輕原來MySQL數(shù)據(jù)庫的壓力,同時因為Redis本身是個內存級別的Cache,讀寫的性能都會大幅度提升。
國內一線互聯(lián)網(wǎng)公司,架構上采用的解決方案很多是類似于上述方案,不過,使用的cache服務卻不一定是Redis,他們會有更豐富的其他選擇,甚至根據(jù)自身業(yè)務特點開發(fā)出自己的NoSQL服務。
6. 空節(jié)點查詢問題
當我們搭建完前面所說的全部服務,認為Web系統(tǒng)已經很強的時候。我們還是那句話,新的問題還是會來的??展?jié)點查詢,是指那些數(shù)據(jù)庫中根本不存在的數(shù)據(jù)請求。例如,我請求查詢一個不存在人員信息,系統(tǒng)會從各級緩存逐級查找,最后查到到數(shù)據(jù)庫本身,然后才得出查找不到的結論,返回給前端。因為各級cache對它無效,這個請求是非常消耗系統(tǒng)資源的,而如果大量的空節(jié)點查詢,是可以沖擊到系統(tǒng)服務的。
在我曾經的工作經歷中,曾深受其害。因此,為了維護Web系統(tǒng)的穩(wěn)定性,設計適當?shù)目展?jié)點過濾機制,非常有必要。
我們當時采用的方式,就是設計一張簡單的記錄映射表。將存在的記錄存儲起來,放入到一臺內存cache中,這樣的話,如果還有空節(jié)點查詢,則在緩存這一層就被阻擋了。
異地部署(地理分布式)
完成了上述架構建設之后,我們的系統(tǒng)是否就已經足夠強大了呢?答案當然是否定的哈,優(yōu)化是無極限的。Web系統(tǒng)雖然表面上看,似乎比較強大了,但是給予用戶的體驗卻不一定是最好的。因為東北的同學,訪問深圳的一個網(wǎng)站服務,他還是會感到一些網(wǎng)絡距離上的慢。這個時候,我們就需要做異地部署,讓Web系統(tǒng)離用戶更近。
一、 核心集中與節(jié)點分散
有玩過大型網(wǎng)游的同學都會知道,網(wǎng)游是有很多個區(qū)的,一般都是按照地域來分,例如廣東專區(qū),北京專區(qū)。如果一個在廣東的玩家,去北京專區(qū)玩,那么他會感覺明顯比在廣東專區(qū)卡。實際上,這些大區(qū)的名稱就已經說明了,它的服務器所在地,所以,廣東的玩家去連接地處北京的服務器,網(wǎng)絡當然會比較慢。
當一個系統(tǒng)和服務足夠大的時候,就必須開始考慮異地部署的問題了。讓你的服務,盡可能離用戶更近。我們前面已經提到了Web的靜態(tài)資源,可以存放在CDN上,然后通過DNS/GSLB的方式,讓靜態(tài)資源的分散“全國各地”。但是,CDN只解決的靜態(tài)資源的問題,沒有解決后端龐大的系統(tǒng)服務還只集中在某個固定城市的問題。
這個時候,異地部署就開始了。異地部署一般遵循:核心集中,節(jié)點分散。
·?核心集中:實際部署過程中,總有一部分的數(shù)據(jù)和服務存在不可部署多套,或者部署多套成本巨大。而對于這些服務和數(shù)據(jù),就仍然維持一套,而部署地點選擇一個地域比較中心的地方,通過網(wǎng)絡內部專線來和各個節(jié)點通訊。
·?節(jié)點分散:將一些服務部署為多套,分布在各個城市節(jié)點,讓用戶請求盡可能選擇近的節(jié)點訪問服務。
例如,我們選擇在上海部署為核心節(jié)點,北京,深圳,武漢,上海為分散節(jié)點(上海自己本身也是一個分散節(jié)點)。我們的服務架構如圖:
需要補充一下的是,上圖中上海節(jié)點和核心節(jié)點是同處于一個機房的,其他分散節(jié)點各自獨立機房。?
國內有很多大型網(wǎng)游,都是大致遵循上述架構。它們會把數(shù)據(jù)量不大的用戶核心賬號等放在核心節(jié)點,而大部分的網(wǎng)游數(shù)據(jù),例如裝備、任務等數(shù)據(jù)和服務放在地區(qū)節(jié)點里。當然,核心節(jié)點和地域節(jié)點之間,也有緩存機制。?
二、 節(jié)點容災和過載保護
節(jié)點容災是指,某個節(jié)點如果發(fā)生故障時,我們需要建立一個機制去保證服務仍然可用。毫無疑問,這里比較常見的容災方式,是切換到附近城市節(jié)點。假如系統(tǒng)的天津節(jié)點發(fā)生故障,那么我們就將網(wǎng)絡流量切換到附近的北京節(jié)點上??紤]到負載均衡,可能需要同時將流量切換到附近的幾個地域節(jié)點。另一方面,核心節(jié)點自身也是需要自己做好容災和備份的,核心節(jié)點一旦故障,就會影響全國服務。
過載保護,指的是一個節(jié)點已經達到最大容量,無法繼續(xù)接接受更多請求了,系統(tǒng)必須有一個保護的機制。一個服務已經滿負載,還繼續(xù)接受新的請求,結果很可能就是宕機,影響整個節(jié)點的服務,為了至少保障大部分用戶的正常使用,過載保護是必要的。
解決過載保護,一般2個方向:
·?拒絕服務,檢測到滿負載之后,就不再接受新的連接請求。例如網(wǎng)游登入中的排隊。
·?分流到其他節(jié)點。這種的話,系統(tǒng)實現(xiàn)更為復雜,又涉及到負載均衡的問題。
小結
Web系統(tǒng)會隨著訪問規(guī)模的增長,漸漸地從1臺服務器可以滿足需求,一直成長為“龐然大物”的大集群。而這個Web系統(tǒng)變大的過程,實際上就是我們解決問題的過程。在不同的階段,解決不同的問題,而新的問題又誕生在舊的解決方案之上。
系統(tǒng)的優(yōu)化是沒有極限的,軟件和系統(tǒng)架構也一直在快速發(fā)展,新的方案解決了老的問題,同時也帶來新的挑戰(zhàn)。
網(wǎng)頁名稱:php處理高并發(fā)和大數(shù)據(jù) php 高并發(fā)處理
文章轉載:http://jinyejixie.com/article38/dosgpsp.html
成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供建站公司、移動網(wǎng)站建設、網(wǎng)站排名、微信小程序、軟件開發(fā)、品牌網(wǎng)站設計
聲明:本網(wǎng)站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)