人工智能(即Artificial Intelligence,簡稱AI)是計算機(jī)科學(xué)研究領(lǐng)域的重要方向,其起源直接可以追溯至現(xiàn)代計算機(jī)未正式誕生之前,但其真正具有廣泛實(shí)用價值應(yīng)看作為21世紀(jì)的初葉,可以預(yù)見在未來的若干年中,隨著計算機(jī)硬件工藝極大的提高、網(wǎng)絡(luò)帶寬迅速增長,筆者認(rèn)為人工智能應(yīng)在計算機(jī)科學(xué)的若干細(xì)分領(lǐng)域中占有最為重要的作用,它也會極為廣泛地被其它學(xué)科所應(yīng)用,可以認(rèn)為21世紀(jì)實(shí)際就是“泛人工智能”的時代。
在灣里等地區(qū),都構(gòu)建了全面的區(qū)域性戰(zhàn)略布局,加強(qiáng)發(fā)展的系統(tǒng)性、市場前瞻性、產(chǎn)品創(chuàng)新能力,以專注、極致的服務(wù)理念,為客戶提供網(wǎng)站建設(shè)、成都網(wǎng)站設(shè)計 網(wǎng)站設(shè)計制作按需求定制設(shè)計,公司網(wǎng)站建設(shè),企業(yè)網(wǎng)站建設(shè),品牌網(wǎng)站設(shè)計,成都營銷網(wǎng)站建設(shè),外貿(mào)營銷網(wǎng)站建設(shè),灣里網(wǎng)站建設(shè)費(fèi)用合理。
與人工智能相較,計算機(jī)領(lǐng)域中的信息安全分支起源較遲,應(yīng)該可以認(rèn)為是上世紀(jì)80年×××始興起,90年代至今都在不斷發(fā)展的一門多交叉、邊緣性學(xué)科;其從最初的、比較單一的殺毒軟件開始(與數(shù)據(jù)加密一起可以認(rèn)為是當(dāng)代信息安全產(chǎn)業(yè)的濫觴,當(dāng)然數(shù)據(jù)加解密實(shí)際上是信息安全最初的需要,但殺毒軟件最為人們所熟知),其后又發(fā)展了防火墻、***檢測系統(tǒng),它們與殺毒軟件一起被稱作信息安全產(chǎn)品的“老三樣”或者被稱為“三架馬車”;隨著信息安全地不斷發(fā)展、嚴(yán)峻的信息安全形式以及客戶的要求,單一的安全產(chǎn)品已然無法滿足現(xiàn)實(shí)情況,筆者將信息安全的發(fā)展劃分為如下幾個階段:
第一階段:單一安全產(chǎn)品階段,即各種信息安全產(chǎn)品各自為站,每種安全產(chǎn)品各管一塊,其形態(tài)也基本上為網(wǎng)關(guān)型、主機(jī)型等;
第二階段:綜合安全產(chǎn)品階段(含解決方案),此類產(chǎn)品提供了單一安全產(chǎn)品所無法具備的一些功能,比如UTM類產(chǎn)品(統(tǒng)一威脅網(wǎng)關(guān))、安全管理中心等,此類產(chǎn)品可能包含若干種功能,而且它們應(yīng)能將相關(guān)信息進(jìn)行相關(guān)關(guān)聯(lián),在一定范圍內(nèi)和一定深度內(nèi)進(jìn)行一般性的挖掘,從而達(dá)到單一產(chǎn)品所無法完成的任務(wù),但其能力應(yīng)該也僅僅是在“一定”之內(nèi);
第三階段:此階段目前似乎沒有太多定論,一般而言可能是指所謂的大數(shù)據(jù)安全、云安全,但個人認(rèn)為無論是大數(shù)據(jù)還是云安全都沒法準(zhǔn)確刻畫、描述和解決我們當(dāng)前面臨的各類復(fù)雜的安全問題,例如零日漏洞、社會工學(xué)(一般可指釣魚,無論是短信方式還是郵件方式等)、海量的惡意軟件變種等等,不一而足,所以此階段應(yīng)該被稱為“人工智能安全產(chǎn)品”時代。因?yàn)槊鎸Ξ?dāng)前如此復(fù)雜的信息安全形勢、如此巨大的數(shù)據(jù)信息、如此“狡詐”的網(wǎng)絡(luò)犯罪手段,僅僅依賴各類傳統(tǒng)方法(包括一般的關(guān)聯(lián)手段等)是無法解決的。
當(dāng)然,人工智能也是無法解決所有信息安全問題,部分的問題還是需要一些管理手段,但竊以為以往提出的在信息安全領(lǐng)域中的“三分技術(shù),七分管理”是值得商榷的,個人堅持“七分技術(shù),三分管理”,因?yàn)闊o論何時、何種場合,“科學(xué)技術(shù)是第一生產(chǎn)力”,如果技術(shù)手段都無解決,那么管理手段能解決的范圍和程度也是相當(dāng)有限的;應(yīng)該強(qiáng)調(diào)的一點(diǎn)是,正確的、適度的、合理的管理手段是必不可少的,否則其結(jié)果不是增加安全運(yùn)維人員的負(fù)荷就是得到錯誤的結(jié)論。
其實(shí),通過對過往安全產(chǎn)品的回溯,我們可以認(rèn)為人工智能應(yīng)早就***到各種類型產(chǎn)品的“血液”之中,其程度或淺或深,其效果或顯著或不甚明顯。其中較為著名的如反垃圾郵件開源系統(tǒng)——Spam Assassin,在其中使用了一些諸如樸素貝葉斯的方法,它對可能今后未知的垃圾郵件進(jìn)行打分和分類,這個開源項(xiàng)目目前仍被較好地維護(hù)。通過實(shí)驗(yàn),現(xiàn)在看來其效果還是不錯的(不過它使用的是Python進(jìn)行訓(xùn)練和識別,速度略慢,但在一般情況下處理郵件還是綽綽有余了)。
通過上節(jié)的例子,我們可以看出人工智能在信息安全上已經(jīng)有了不錯的應(yīng)用,那么其還能解決哪些問題?
人工智能其實(shí)也包含若干個不同的用途,筆者以為包括:
1. 分類:如在上例中對于垃圾郵件、釣魚郵件/短信的分類,即區(qū)分安全和不安全問題;各種分類模型或算法是人工智能技術(shù)應(yīng)用于信息安全領(lǐng)域的最為重要的手段或方法;
2. 聚類:目前還沒有看到在安全產(chǎn)品中有被廣泛地應(yīng)用;
3. 回歸分析和預(yù)測:這個已經(jīng)被廣泛地運(yùn)用于一些網(wǎng)絡(luò)類型的信息安全產(chǎn)品;
4. 規(guī)則挖掘:在信息安全領(lǐng)域,這種方法似乎沒有被大范圍使用,難道用不到?
5. 距離分析(其實(shí)聚類分析也是一種比較典型的距離分析):此類方法在一些網(wǎng)絡(luò)流量類產(chǎn)品中有比較好的應(yīng)用,但安全也和網(wǎng)絡(luò)是密不可分的;
6. 假設(shè)檢驗(yàn):可以對一些對象的行為進(jìn)行分類并建立基線,使用假設(shè)檢驗(yàn)的方法來預(yù)測。
綜上所述,網(wǎng)絡(luò)安全與人工智能,特別是“機(jī)器學(xué)習(xí)”具有密不可分的關(guān)系,其中分類是最為重要的手段;只有通過對于不同數(shù)據(jù)的分類,方可識別惡意行為和正常行為,才能比較有效地處理安全問題,其它方法也是比較常用的手段,它們共同組成安全產(chǎn)品的“智腦”。
當(dāng)然,不是安全產(chǎn)品僅僅具備人工智能這一項(xiàng)裝備就萬事大吉了,還是要結(jié)合一些傳統(tǒng)的,諸如特征(如MD5等)、一般性策略、名譽(yù)技術(shù)(其實(shí)也就是各類黑白名單庫)等方能充分發(fā)揮其效能。另外,信息的收集、處理(各類信息的元數(shù)據(jù)抽?。?、識別(如對于網(wǎng)絡(luò)包的深度識別技術(shù))、基礎(chǔ)統(tǒng)計等也是必不可少的(因?yàn)?,各類人工智能算法并不是處理大?shù)據(jù)的),這些步驟方是大數(shù)據(jù)安全的“前奏”。
那么,在一些信息安全產(chǎn)品中,最需要通過人工智能技術(shù)解決哪些問題?答案應(yīng)是對各類未知威脅的檢測。可以想象,如果一款安全產(chǎn)品總是需要或僅僅依賴各類特征來發(fā)現(xiàn)問題,那么其時效性、有效性均會存在巨大隱患,在某種程度而言,它其實(shí)就是最大的“黑洞”。另外,需要說明一點(diǎn)的是,經(jīng)過訓(xùn)練的數(shù)據(jù)特征是需要升級的,這個只靠單個結(jié)點(diǎn)可能是無法勝任的。
既然人工智能與信息安全產(chǎn)品有如此深刻的關(guān)系,那么我們需要梳理下當(dāng)前信息安全信息形式下在哪些方面應(yīng)應(yīng)用哪些相關(guān)技術(shù)(包括已經(jīng)使用的和可能在未來需要使用的):
1. 關(guān)于動態(tài)域名的識別:由于目前***已在各類惡意軟件中占有統(tǒng)治力的地位(純粹只具備破壞性的病毒,由于利益問題,占比基本很?。?,而且***主要的行為就是利用遠(yuǎn)程控制方法來進(jìn)行操控、***、重要信息的獲取和偷竊,多數(shù)***會使用動態(tài)域名的方法與遠(yuǎn)程服務(wù)器進(jìn)行交互以逃避靜態(tài)名單的檢測及阻斷,故對于動態(tài)域名的識別是防止***的重要一環(huán),這只能通過人工智能的方法并配合靜態(tài)名單來滿足要求;
2. 釣魚行為的識別:在當(dāng)前階段,利用社會工學(xué)的手段,使用短信(普通短信及彩信)、郵件等途徑誘騙用戶點(diǎn)擊、下載惡意軟件已經(jīng)成為社會信息安全的毒瘤,而這些釣魚手段防不甚防,如文字具有非常的誘惑力且文字間插入很多特殊字符以迷惑識別軟件、圖像中隱藏惡意鏈接等等,隱蔽性很強(qiáng),一般受害者根本無法辨識,故在很多場合亟需具備一定智能的軟件去不斷學(xué)習(xí)和識別這些問題;
3. 不斷演進(jìn)的惡意軟件形態(tài)識別:目前,由于惡意軟件的偽裝方法十分隱蔽,如加殼甚至是私有殼、分段組裝、延遲執(zhí)行、反沙箱或反虛擬化等等,雖然利用沙箱可以檢測出部分行為,但存在兩個問題:其一是沙箱的能力十分有限,而且可能產(chǎn)生比一些誤報,在很多場合下還需進(jìn)行人工分析;其二是沙箱的性能十分有限,運(yùn)行一個樣本,在一般情況下可能需要若干分鐘,如果將同一個樣本放置在不同種類的沙箱中,那么消耗的資源和時間都是十分驚人的,故需要更好的靜態(tài)識別方法(不僅僅是特征碼),以減少沙箱運(yùn)行的次數(shù);
4. 對于異常流量的識別:如果企業(yè)對于自身的網(wǎng)絡(luò)連接行為約束得較好(不過這也不排除某些合法站點(diǎn)被掛馬),那么可能對于這個方面的防護(hù)要求并不是太高(但也未必不會產(chǎn)生問題),但是從安全性的角度而言,非法的外聯(lián)、內(nèi)聯(lián)永遠(yuǎn)也是企業(yè)安全的最大問題來源,這個也無法杜絕使用“擺渡”方式來偷竊企業(yè)敏感信息的手段,故對于不斷增長的網(wǎng)絡(luò)連接行為的檢視和審計就成為可能“阻斷”企業(yè)信息泄密的最后方法,但如何有效刻畫網(wǎng)絡(luò)連接、通訊的各類特征、內(nèi)網(wǎng)各個結(jié)點(diǎn)的網(wǎng)絡(luò)行為、用戶網(wǎng)絡(luò)行為就成為非常重要的一環(huán),但這里仍需要使用一些人工智能及統(tǒng)計學(xué)的方法。
以上闡述的幾個方面可能不過是信息安全產(chǎn)品所需要解決的眾多問題中的幾個重要方面,但具體而言,特別是在目前大數(shù)據(jù)、云計算環(huán)境下,一個具備“智腦”的信息安全產(chǎn)品應(yīng)具有如下幾項(xiàng)特點(diǎn):
第一,至少具備分布式的產(chǎn)品架構(gòu),能多個抓取點(diǎn)所獲取的不同種類的數(shù)據(jù)有分析、特征提取的能力;
第二,具備一定能力以提供對數(shù)據(jù)建模的功能,當(dāng)然,提供建模的方法或接口最好有用戶自定義模塊;
第三,也是最重要的一環(huán)是,應(yīng)提供較為豐富的人工智能應(yīng)用,比如集成如樸素貝葉斯方法、貝葉斯網(wǎng)絡(luò)、Hopfield/BP神經(jīng)網(wǎng)絡(luò)、卷積神經(jīng)網(wǎng)絡(luò)、波爾茲曼神經(jīng)網(wǎng)絡(luò)、深度置信神經(jīng)網(wǎng)絡(luò)、n-gram方法(參見文獻(xiàn)[4])、遺傳算法、模擬退火、支持向量機(jī)(Support Vector Machine,簡稱SVM)、k-means、LDA、Apriori等等,為此應(yīng)還需要集成各類向量/矩陣運(yùn)算(能支持上百個維度)、空間距離運(yùn)算(如歐氏距離、馬氏距離等)、統(tǒng)計數(shù)字特征分析、假設(shè)檢驗(yàn)分析等,方可在面對處理不同問題時“游刃有余”。比較好的一點(diǎn)是,很多開源庫已經(jīng)提供了這些功能,如R、Octave、libsvm等,一般所要做的工作不過是恰當(dāng)?shù)爻槿√卣骱秃线m地模型建立。
總之,對于一個不具備“智腦”的信息安全產(chǎn)品而僅僅依賴靜態(tài)特征運(yùn)作,其在識別、防御“未知威脅”上肯定會存在這樣或那樣的問題,也無法應(yīng)對日益復(fù)雜的信息安全問題。
通過上面的論述,可以看出當(dāng)前信息安全類產(chǎn)品(無論是防御類還是主動發(fā)現(xiàn)類)所使用的人工智能技術(shù)主要是基于一般機(jī)器學(xué)習(xí)方法的,而且此類機(jī)器學(xué)習(xí)方法還是比較集中在所謂“有師類(即有監(jiān)督)”學(xué)習(xí),而隨著技術(shù)的不斷發(fā)展和演進(jìn),信息安全類產(chǎn)品應(yīng)及時將新的人工智能技術(shù)和手段不斷集中進(jìn)來,更多地使用“無師類(即無監(jiān)督)”的學(xué)習(xí)方法方可應(yīng)對不斷惡化的信息安全形勢,即更大地提高產(chǎn)品的智能化水平,從而在應(yīng)對各類問題的時效性和有效性上更進(jìn)一步。
俗話說:“道高一尺,魔高一丈”,信息安全(無論是互聯(lián)網(wǎng)安全、內(nèi)網(wǎng)安全還是其它方面的安全)永遠(yuǎn)是一場“沒有硝煙的戰(zhàn)爭”,***兩端的理論、實(shí)踐(包括各種技術(shù)、手段、方法等)也不斷在發(fā)展,可以預(yù)見未來的信息安全戰(zhàn)爭就是:“人工智能對抗人工智能、機(jī)器學(xué)習(xí)對抗機(jī)器學(xué)習(xí),甚至是機(jī)器人對抗機(jī)器人!。”
本文名稱:信息安全與人工智能
網(wǎng)頁鏈接:http://jinyejixie.com/article36/jjpjsg.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供全網(wǎng)營銷推廣、電子商務(wù)、網(wǎng)頁設(shè)計公司、面包屑導(dǎo)航、微信公眾號、關(guān)鍵詞優(yōu)化
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)