小編給大家分享一下pytorch如何實(shí)現(xiàn)mnist數(shù)據(jù)集的圖像可視化及保存,希望大家閱讀完這篇文章之后都有所收獲,下面讓我們一起去探討吧!
創(chuàng)新互聯(lián)公司專注于慈溪企業(yè)網(wǎng)站建設(shè),響應(yīng)式網(wǎng)站建設(shè),商城網(wǎng)站定制開發(fā)。慈溪網(wǎng)站建設(shè)公司,為慈溪等地區(qū)提供建站服務(wù)。全流程按需設(shè)計(jì)網(wǎng)站,專業(yè)設(shè)計(jì),全程項(xiàng)目跟蹤,創(chuàng)新互聯(lián)公司專業(yè)和態(tài)度為您提供的服務(wù)如何將pytorch中mnist數(shù)據(jù)集的圖像可視化及保存
導(dǎo)出一些庫(kù)
import torch import torchvision import torch.utils.data as Data import scipy.misc import os import matplotlib.pyplot as plt BATCH_SIZE = 50 DOWNLOAD_MNIST = True
數(shù)據(jù)集的準(zhǔn)備
#訓(xùn)練集測(cè)試集的準(zhǔn)備
train_data = torchvision.datasets.MNIST(root='./mnist/', train=True,transform=torchvision.transforms.ToTensor(), download=DOWNLOAD_MNIST, ) test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
將訓(xùn)練及測(cè)試集利用dataloader進(jìn)行迭代
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), requires_grad=True).type(torch.FloatTensor)[:20]/255 test_y = test_data.test_labels[:20]#前兩千張 #具體查看圖像形式為: a_data, a_label = train_data[0] print(type(a_data))#tensor 類型 #print(a_data) print(a_label) #把原始圖片保存至MNIST_data/raw/下 save_dir="mnist/raw/" if os.path.exists(save_dir)is False: os.makedirs(save_dir) for i in range(20): image_array,_=train_data[i]#打印第i個(gè) image_array=image_array.resize(28,28) filename=save_dir + 'mnist_train_%d.jpg' % i#保存文件的格式 print(filename) print(train_data.train_labels[i])#打印出標(biāo)簽 scipy.misc.toimage(image_array,cmin=0.0,cmax=1.0).save(filename)#保存圖像
1.PyTorch是相當(dāng)簡(jiǎn)潔且高效快速的框架;2.設(shè)計(jì)追求最少的封裝;3.設(shè)計(jì)符合人類思維,它讓用戶盡可能地專注于實(shí)現(xiàn)自己的想法;4.與google的Tensorflow類似,F(xiàn)AIR的支持足以確保PyTorch獲得持續(xù)的開發(fā)更新;5.PyTorch作者親自維護(hù)的論壇 供用戶交流和求教問題6.入門簡(jiǎn)單
看完了這篇文章,相信你對(duì)“pytorch如何實(shí)現(xiàn)mnist數(shù)據(jù)集的圖像可視化及保存”有了一定的了解,如果想了解更多相關(guān)知識(shí),歡迎關(guān)注創(chuàng)新互聯(lián)成都網(wǎng)站設(shè)計(jì)公司行業(yè)資訊頻道,感謝各位的閱讀!
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國(guó)服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡(jiǎn)單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢(shì),專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場(chǎng)景需求。
分享標(biāo)題:pytorch如何實(shí)現(xiàn)mnist數(shù)據(jù)集的圖像可視化及保存-創(chuàng)新互聯(lián)
文章轉(zhuǎn)載:http://jinyejixie.com/article36/jeisg.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供移動(dòng)網(wǎng)站建設(shè)、服務(wù)器托管、網(wǎng)站導(dǎo)航、自適應(yīng)網(wǎng)站、虛擬主機(jī)、響應(yīng)式網(wǎng)站
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容