成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

怎么使用Python的pandas庫創(chuàng)建多層次索引

本篇內(nèi)容介紹了“怎么使用Python的pandas庫創(chuàng)建多層次索引”的有關(guān)知識(shí),在實(shí)際案例的操作過程中,不少人都會(huì)遇到這樣的困境,接下來就讓小編帶領(lǐng)大家學(xué)習(xí)一下如何處理這些情況吧!希望大家仔細(xì)閱讀,能夠?qū)W有所成!

成都創(chuàng)新互聯(lián)公司網(wǎng)站建設(shè)服務(wù)商,為中小企業(yè)提供網(wǎng)站設(shè)計(jì)制作、成都做網(wǎng)站服務(wù),網(wǎng)站設(shè)計(jì),網(wǎng)站托管運(yùn)營等一站式綜合服務(wù)型公司,專業(yè)打造企業(yè)形象網(wǎng)站,讓您在眾多競爭對(duì)手中脫穎而出成都創(chuàng)新互聯(lián)公司。

引言

pd.MultiIndex,即具有多個(gè)層次的索引。通過多層次索引,我們就可以操作整個(gè)索引組的數(shù)據(jù)。本文主要介紹在Pandas中創(chuàng)建多層索引的6種方式:

  • pd.MultiIndex.from_arrays():多維數(shù)組作為參數(shù),高維指定高層索引,低維指定低層索引。

  • pd.MultiIndex.from_tuples():元組的列表作為參數(shù),每個(gè)元組指定每個(gè)索引(高維和低維索引)。

  • pd.MultiIndex.from_product():一個(gè)可迭代對(duì)象的列表作為參數(shù),根據(jù)多個(gè)可迭代對(duì)象元素的笛卡爾積(元素間的兩兩組合)進(jìn)行創(chuàng)建索引。

  • pd.MultiIndex.from_frame:根據(jù)現(xiàn)有的數(shù)據(jù)框來直接生成

  • groupby():通過數(shù)據(jù)分組統(tǒng)計(jì)得到

  • pivot_table():生成透視表的方式來得到

pd.MultiIndex.from_arrays()

In [1]:

import pandas as pd
import numpy as np

通過數(shù)組的方式來生成,通常指定的是列表中的元素:

In [2]:

# 列表元素是字符串和數(shù)字
array1 = [["xiaoming","guanyu","zhangfei"], 
          [22,25,27]
         ]
m1 = pd.MultiIndex.from_arrays(array1)
m1

Out[2]:

MultiIndex([('xiaoming', 22),            (  'guanyu', 25),            ('zhangfei', 27)],
           )

In [3]:

type(m1)  # 查看數(shù)據(jù)類型

通過type函數(shù)來查看數(shù)據(jù)類型,發(fā)現(xiàn)的確是:MultiIndex

Out[3]:

pandas.core.indexes.multi.MultiIndex

在創(chuàng)建的同時(shí)可以指定每個(gè)層級(jí)的名字:

In [4]:

# 列表元素全是字符串
array2 = [["xiaoming","guanyu","zhangfei"],
          ["male","male","female"]
         ]
m2 = pd.MultiIndex.from_arrays(
	array2, 
  # 指定姓名和性別
  names=["name","sex"])
m2

Out[4]:

MultiIndex([('xiaoming',   'male'),            (  'guanyu',   'male'),            ('zhangfei', 'female')],
           names=['name', 'sex'])

下面的例子是生成3個(gè)層次的索引且指定名字:

In [5]:

array3 = [["xiaoming","guanyu","zhangfei"],
          ["male","male","female"],
          [22,25,27]
         ]
m3 = pd.MultiIndex.from_arrays(
	array3, 
	names=["姓名","性別","年齡"])
m3

Out[5]:

MultiIndex([('xiaoming',   'male', 22),            (  'guanyu',   'male', 25),            ('zhangfei', 'female', 27)],
           names=['姓名', '性別', '年齡'])

pd.MultiIndex.from_tuples()

通過元組的形式來生成多層索引:

In [6]:

# 元組的形式
array4 = (("xiaoming","guanyu","zhangfei"), 
          (22,25,27)
         )
m4 = pd.MultiIndex.from_arrays(array4)
m4

Out[6]:

MultiIndex([('xiaoming', 22),            (  'guanyu', 25),            ('zhangfei', 27)],
           )

In [7]:

# 元組構(gòu)成的3層索引
array5 = (("xiaoming","guanyu","zhangfei"),
          ("male","male","female"),
          (22,25,27))
m5 = pd.MultiIndex.from_arrays(array5)
m5

Out[7]:

MultiIndex([('xiaoming',   'male', 22),            (  'guanyu',   'male', 25),            ('zhangfei', 'female', 27)],
           )
列表和元組是可以混合使用的
  • 最外層是列表

  • 里面全部是元組

In [8]:

array6 = [("xiaoming","guanyu","zhangfei"),
          ("male","male","female"),
          (18,35,27)
         ]
# 指定名字
m6 = pd.MultiIndex.from_arrays(array6,names=["姓名","性別","年齡"])
m6

Out[8]:

MultiIndex([('xiaoming',   'male', 18),            (  'guanyu',   'male', 35),            ('zhangfei', 'female', 27)],
           names=['姓名', '性別', '年齡'] # 指定名字
           )

pd.MultiIndex.from_product()

使用可迭代對(duì)象的列表作為參數(shù),根據(jù)多個(gè)可迭代對(duì)象元素的笛卡爾積(元素間的兩兩組合)進(jìn)行創(chuàng)建索引。

在Python中,我們使用 isinstance()函數(shù) 判斷python對(duì)象是否可迭代:

# 導(dǎo)入 collections 模塊的 Iterable 對(duì)比對(duì)象
from collections import Iterable

怎么使用Python的pandas庫創(chuàng)建多層次索引

怎么使用Python的pandas庫創(chuàng)建多層次索引

通過上面的例子我們總結(jié):常見的字符串、列表、集合、元組、字典都是可迭代對(duì)象

下面舉例子來說明:

In [18]:

names = ["xiaoming","guanyu","zhangfei"]
numbers = [22,25]
m7 = pd.MultiIndex.from_product(
    [names, numbers], 
    names=["name","number"]) # 指定名字
m7

Out[18]:

MultiIndex([('xiaoming', 22),            ('xiaoming', 25),            (  'guanyu', 22),            (  'guanyu', 25),            ('zhangfei', 22),            ('zhangfei', 25)],
           names=['name', 'number'])

In [19]:

# 需要展開成列表形式
strings = list("abc") 
lists = [1,2]
m8 = pd.MultiIndex.from_product(
	[strings, lists],
	names=["alpha","number"])
m8

Out[19]:

MultiIndex([('a', 1),            ('a', 2),            ('b', 1),            ('b', 2),            ('c', 1),            ('c', 2)],
           names=['alpha', 'number'])

In [20]:

# 使用元組形式
strings = ("a","b","c") 
lists = [1,2]
m9 = pd.MultiIndex.from_product(
	[strings, lists],
	names=["alpha","number"])
m9

Out[20]:

MultiIndex([('a', 1),            ('a', 2),            ('b', 1),            ('b', 2),            ('c', 1),            ('c', 2)],
           names=['alpha', 'number'])

In [21]:

# 使用range函數(shù)
strings = ("a","b","c")  # 3個(gè)元素
lists = range(3)  # 0,1,2  3個(gè)元素
m10 = pd.MultiIndex.from_product(
	[strings, lists],
	names=["alpha","number"])
m10

Out[21]:

MultiIndex([('a', 0),            ('a', 1),            ('a', 2),            ('b', 0),            ('b', 1),            ('b', 2),            ('c', 0),            ('c', 1),            ('c', 2)],
           names=['alpha', 'number'])

In [22]:

# 使用range函數(shù)
strings = ("a","b","c") 
list1 = range(3)  # 0,1,2
list2 = ["x","y"]
m11 = pd.MultiIndex.from_product(
	[strings, list1, list2],
  names=["name","l1","l2"]
  )
m11  # 總個(gè)數(shù) 3*3*2=18

總個(gè)數(shù)是``332=18`個(gè):

Out[22]:

MultiIndex([('a', 0, 'x'),            ('a', 0, 'y'),            ('a', 1, 'x'),            ('a', 1, 'y'),            ('a', 2, 'x'),            ('a', 2, 'y'),            ('b', 0, 'x'),            ('b', 0, 'y'),            ('b', 1, 'x'),            ('b', 1, 'y'),            ('b', 2, 'x'),            ('b', 2, 'y'),            ('c', 0, 'x'),            ('c', 0, 'y'),            ('c', 1, 'x'),            ('c', 1, 'y'),            ('c', 2, 'x'),            ('c', 2, 'y')],
           names=['name', 'l1', 'l2'])

pd.MultiIndex.from_frame()

通過現(xiàn)有的DataFrame直接來生成多層索引:

df = pd.DataFrame({"name":["xiaoming","guanyu","zhaoyun"],
                  "age":[23,39,34],
                  "sex":["male","male","female"]})
df

怎么使用Python的pandas庫創(chuàng)建多層次索引

直接生成了多層索引,名字就是現(xiàn)有數(shù)據(jù)框的列字段:

In [24]:

pd.MultiIndex.from_frame(df)

Out[24]:

MultiIndex([('xiaoming', 23,   'male'),            (  'guanyu', 39,   'male'),            ( 'zhaoyun', 34, 'female')],
           names=['name', 'age', 'sex'])

通過names參數(shù)來指定名字:

In [25]:

# 可以自定義名字
pd.MultiIndex.from_frame(df,names=["col1","col2","col3"])

Out[25]:

MultiIndex([('xiaoming', 23,   'male'),            (  'guanyu', 39,   'male'),            ( 'zhaoyun', 34, 'female')],
           names=['col1', 'col2', 'col3'])

groupby()

通過groupby函數(shù)的分組功能計(jì)算得到:

In [26]:

df1 = pd.DataFrame({"col1":list("ababbc"),
                   "col2":list("xxyyzz"),
                   "number1":range(90,96),
                   "number2":range(100,106)})
df1

Out[26]:

怎么使用Python的pandas庫創(chuàng)建多層次索引

df2 = df1.groupby(["col1","col2"]).agg({"number1":sum,
                                        "number2":np.mean})
df2

怎么使用Python的pandas庫創(chuàng)建多層次索引

查看數(shù)據(jù)的索引:

In [28]:

df2.index

Out[28]:

MultiIndex([('a', 'x'),            ('a', 'y'),            ('b', 'x'),            ('b', 'y'),            ('b', 'z'),            ('c', 'z')],
           names=['col1', 'col2'])

pivot_table()

通過數(shù)據(jù)透視功能得到:

In [29]:

df3 = df1.pivot_table(values=["col1","col2"],index=["col1","col2"])
df3

怎么使用Python的pandas庫創(chuàng)建多層次索引

In [30]:

df3.index

Out[30]:

MultiIndex([('a', 'x'),            ('a', 'y'),            ('b', 'x'),            ('b', 'y'),            ('b', 'z'),            ('c', 'z')],
           names=['col1', 'col2'])

“怎么使用Python的pandas庫創(chuàng)建多層次索引”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識(shí)可以關(guān)注創(chuàng)新互聯(lián)網(wǎng)站,小編將為大家輸出更多高質(zhì)量的實(shí)用文章!

當(dāng)前題目:怎么使用Python的pandas庫創(chuàng)建多層次索引
鏈接分享:http://jinyejixie.com/article24/jopije.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供企業(yè)建站、網(wǎng)站制作、商城網(wǎng)站、品牌網(wǎng)站建設(shè)、標(biāo)簽優(yōu)化、用戶體驗(yàn)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

成都做網(wǎng)站
略阳县| 中阳县| 合阳县| 应城市| 西安市| 横山县| 错那县| 屯门区| 高淳县| 民权县| 仙居县| 满城县| 阿拉尔市| 凉城县| 石嘴山市| 张掖市| 长岛县| 武安市| 平原县| 临朐县| 丰顺县| 鲜城| 永安市| 军事| 九寨沟县| 集贤县| 九龙县| 集安市| 石渠县| 松桃| 句容市| 宜阳县| 衡东县| 封开县| 九龙坡区| 平凉市| 保德县| 长宁区| 德州市| 隆回县| 桐庐县|