這篇文章給大家分享的是有關(guān)如何控制hive中的map數(shù)的內(nèi)容。小編覺(jué)得挺實(shí)用的,因此分享給大家做個(gè)參考,一起跟隨小編過(guò)來(lái)看看吧。
創(chuàng)新互聯(lián)公司是創(chuàng)新、創(chuàng)意、研發(fā)型一體的綜合型網(wǎng)站建設(shè)公司,自成立以來(lái)公司不斷探索創(chuàng)新,始終堅(jiān)持為客戶(hù)提供滿(mǎn)意周到的服務(wù),在本地打下了良好的口碑,在過(guò)去的10年時(shí)間我們累計(jì)服務(wù)了上千家以及全國(guó)政企客戶(hù),如成都圍欄護(hù)欄等企業(yè)單位,完善的項(xiàng)目管理流程,嚴(yán)格把控項(xiàng)目進(jìn)度與質(zhì)量監(jiān)控加上過(guò)硬的技術(shù)實(shí)力獲得客戶(hù)的一致稱(chēng)譽(yù)。
1. 通常情況下,作業(yè)會(huì)通過(guò)input的目錄產(chǎn)生一個(gè)或者多個(gè)map任務(wù)。 主要的決定因素有: input的文件總個(gè)數(shù),input的文件大小,集群設(shè)置的文件塊大小(目前為128M, 可在hive中通過(guò)set dfs.block.size;命令查看到,該參數(shù)不能自定義修改); 答案也是不一定。比如有一個(gè)127m的文件,正常會(huì)用一個(gè)map去完成,但這個(gè)文件只有一個(gè)或者兩個(gè)小字段,卻有幾千萬(wàn)的記錄, 如果map處理的邏輯比較復(fù)雜,用一個(gè)map任務(wù)去做,肯定也比較耗時(shí)。 針對(duì)上面的問(wèn)題3和4,我們需要采取兩種方式來(lái)解決:即減少map數(shù)和增加map數(shù); 如何合并小文件,減少map數(shù)? 假設(shè)一個(gè)SQL任務(wù): Select count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’; 該任務(wù)的inputdir/group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 共有194個(gè)文件,其中很多是遠(yuǎn)遠(yuǎn)小于128m的小文件,總大小9G,正常執(zhí)行會(huì)用194個(gè)map任務(wù)。 Map總共消耗的計(jì)算資源: SLOTS_MILLIS_MAPS= 623,020 我通過(guò)以下方法來(lái)在map執(zhí)行前合并小文件,減少map數(shù): set mapred.max.split.size=100000000; set mapred.min.split.size.per.node=100000000; set mapred.min.split.size.per.rack=100000000; set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; 再執(zhí)行上面的語(yǔ)句,用了74個(gè)map任務(wù),map消耗的計(jì)算資源:SLOTS_MILLIS_MAPS= 333,500 對(duì)于這個(gè)簡(jiǎn)單SQL任務(wù),執(zhí)行時(shí)間上可能差不多,但節(jié)省了一半的計(jì)算資源。 大概解釋一下,100000000表示100M, sethive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;這個(gè)參數(shù)表示執(zhí)行前進(jìn)行小文件合并, 前面三個(gè)參數(shù)確定合并文件塊的大小,大于文件塊大小128m的,按照128m來(lái)分隔,小于128m,大于100m的,按照100m來(lái)分隔,把那些小于100m的(包括小文件和分隔大文件剩下的), 進(jìn)行合并,最終生成了74個(gè)塊。 如何適當(dāng)?shù)脑黾觤ap數(shù)? 當(dāng)input的文件都很大,任務(wù)邏輯復(fù)雜,map執(zhí)行非常慢的時(shí)候,可以考慮增加Map數(shù),來(lái)使得每個(gè)map處理的數(shù)據(jù)量減少,從而提高任務(wù)的執(zhí)行效率。 假設(shè)有這樣一個(gè)任務(wù): Select data_desc, count(1), count(distinct id), sum(case when …), sum(case when ...), sum(…) from a group by data_desc 如果表a只有一個(gè)文件,大小為120M,但包含幾千萬(wàn)的記錄,如果用1個(gè)map去完成這個(gè)任務(wù),肯定是比較耗時(shí)的,這種情況下,我們要考慮將這一個(gè)文件合理的拆分成多個(gè), 這樣就可以用多個(gè)map任務(wù)去完成。 set mapred.reduce.tasks=10; create table a_1 as select * from a distribute by rand(123); 這樣會(huì)將a表的記錄,隨機(jī)的分散到包含10個(gè)文件的a_1表中,再用a_1代替上面sql中的a表,則會(huì)用10個(gè)map任務(wù)去完成。 每個(gè)map任務(wù)處理大于12M(幾百萬(wàn)記錄)的數(shù)據(jù),效率肯定會(huì)好很多。 看上去,貌似這兩種有些矛盾,一個(gè)是要合并小文件,一個(gè)是要把大文件拆成小文件,這點(diǎn)正是重點(diǎn)需要關(guān)注的地方, 根據(jù)實(shí)際情況,控制map數(shù)量需要遵循兩個(gè)原則:使大數(shù)據(jù)量利用合適的map數(shù);使單個(gè)map任務(wù)處理合適的數(shù)據(jù)量; |
感謝各位的閱讀!關(guān)于“如何控制hive中的map數(shù)”這篇文章就分享到這里了,希望以上內(nèi)容可以對(duì)大家有一定的幫助,讓大家可以學(xué)到更多知識(shí),如果覺(jué)得文章不錯(cuò),可以把它分享出去讓更多的人看到吧!
當(dāng)前題目:如何控制hive中的map數(shù)
文章出自:http://jinyejixie.com/article24/ggsgce.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站排名、搜索引擎優(yōu)化、關(guān)鍵詞優(yōu)化、移動(dòng)網(wǎng)站建設(shè)、面包屑導(dǎo)航、定制網(wǎng)站
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶(hù)投稿、用戶(hù)轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀(guān)點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話(huà):028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)