成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

Python怎么使用OpenCV進行標定-創(chuàng)新互聯(lián)

這篇文章主要介紹Python怎么使用OpenCV進行標定,文中介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們一定要看完!

創(chuàng)新互聯(lián)建站擁有網(wǎng)站維護技術(shù)和項目管理團隊,建立的售前、實施和售后服務體系,為客戶提供定制化的成都網(wǎng)站設計、網(wǎng)站制作、網(wǎng)站維護、西部信息服務器托管解決方案。為客戶網(wǎng)站安全和日常運維提供整體管家式外包優(yōu)質(zhì)服務。我們的網(wǎng)站維護服務覆蓋集團企業(yè)、上市公司、外企網(wǎng)站、電子商務商城網(wǎng)站建設、政府網(wǎng)站等各類型客戶群體,為全球上1000+企業(yè)提供全方位網(wǎng)站維護、服務器維護解決方案。

一、準備

OpenCV使用棋盤格板進行標定,如下圖所示。為了標定相機,我們需要輸入一系列三維點和它們對應的二維圖像點。在黑白相間的棋盤格上,二維圖像點很容易通過角點檢測找到。而對于真實世界中的三維點呢?由于我們采集中,是將相機放在一個地方,而將棋盤格定標板進行移動變換不同的位置,然后對其進行拍攝。所以我們需要知道(X,Y,Z)的值。但是簡單來說,我們定義棋盤格所在平面為XY平面,即Z=0。對于定標板來說,我們可以知道棋盤格的方塊尺寸,例如30mm,這樣我們就可以把棋盤格上的角點坐標定義為(0,0,0),(30,0,0),(60,0,0),···,這個結(jié)果的單位是mm。

3D點稱為object points,2D圖像點稱為image points。

Python怎么使用OpenCV進行標定

二、檢測棋盤格角點

為了找到棋盤格模板,我們使用openCV中的函數(shù)cv2.findChessboardCorners()。我們也需要告訴程序我們使用的模板是什么規(guī)格的,例如8*8的棋盤格或者5*5棋盤格等,建議使用x方向和y方向個數(shù)不相等的棋盤格模板。下面實驗中,我們使用的是10*7的棋盤格,每個方格邊長是20mm,即含有9*6的內(nèi)部角點。這個函數(shù)如果檢測到模板,會返回對應的角點,并返回true。當然不一定所有的圖像都能找到需要的模板,所以我們可以使用多幅圖像進行定標。除了使用棋盤格,我們還可以使用圓點陣,對應的函數(shù)為cv2.findCirclesGrid()。

找到角點后,我們可以使用cv2.cornerSubPix()可以得到更為準確的角點像素坐標。我們也可以使用cv2.drawChessboardCorners()將角點繪制到圖像上顯示。如下圖所示:

Python怎么使用OpenCV進行標定

三、標定

通過上面的步驟,我們得到了用于標定的三維點和與其對應的圖像上的二維點對。我們使用cv2.calibrateCamera()進行標定,這個函數(shù)會返回標定結(jié)果、相機的內(nèi)參數(shù)矩陣、畸變系數(shù)、旋轉(zhuǎn)矩陣和平移向量。

四、去畸變

第三步我們已經(jīng)得到了相機內(nèi)參和畸變系數(shù),在將圖像去畸變之前,我們還可以使用cv.getOptimalNewCameraMatrix()優(yōu)化內(nèi)參數(shù)和畸變系數(shù),通過設定自由自由比例因子alpha。當alpha設為0的時候,將會返回一個剪裁過的將去畸變后不想要的像素去掉的內(nèi)參數(shù)和畸變系數(shù);當alpha設為1的時候,將會返回一個包含額外黑色像素點的內(nèi)參數(shù)和畸變系數(shù),并返回一個ROI用于將其剪裁掉。

然后我們就可以使用新得到的內(nèi)參數(shù)矩陣和畸變系數(shù)對圖像進行去畸變了。有兩種方法進行去畸變:

(1)使用cv2.undistort()

這是一個最直接的辦法,只用直接調(diào)用函數(shù)就可以得到去畸變的圖像,使用上面的ROI可以對其進行剪裁。代碼如下:

# undistort
dst = cv2.undistort(img, mtx, dist, None, newcameramtx)

# crop the image
x,y,w,h = roi
dst = dst[y:y+h, x:x+w]
cv2.imwrite('calibresult.png',dst)

下圖顯示將一張圖片去畸變后,保留黑色像素的結(jié)果:

Python怎么使用OpenCV進行標定

(2)使用remmaping

這是一個分兩步的方法,首先計算一個從畸變圖像到非畸變圖像的映射,然后使用這個映射關系對圖像進行去畸變。
代碼如下:

# undistort
mapx,mapy = cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w,h),5)
dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR)

# crop the image
x,y,w,h = roi
dst = dst[y:y+h, x:x+w]
cv2.imwrite('calibresult.png',dst)

五、反投影誤差

通過反投影誤差,我們可以來評估結(jié)果的好壞。越接近0,說明結(jié)果越理想。通過之前計算的內(nèi)參數(shù)矩陣、畸變系數(shù)、旋轉(zhuǎn)矩陣和平移向量,使用cv2.projectPoints()計算三維點到二維圖像的投影,然后計算反投影得到的點與圖像上檢測到的點的誤差,最后計算一個對于所有標定圖像的平均誤差,這個值就是反投影誤差。

代碼

所有步驟的代碼如下所示:

#coding:utf-8
import cv2
import numpy as np
import glob

# 找棋盤格角點
# 閾值
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
#棋盤格模板規(guī)格
w = 9
h = 6
# 世界坐標系中的棋盤格點,例如(0,0,0), (1,0,0), (2,0,0) ....,(8,5,0),去掉Z坐標,記為二維矩陣
objp = np.zeros((w*h,3), np.float32)
objp[:,:2] = np.mgrid[0:w,0:h].T.reshape(-1,2)
# 儲存棋盤格角點的世界坐標和圖像坐標對
objpoints = [] # 在世界坐標系中的三維點
imgpoints = [] # 在圖像平面的二維點

images = glob.glob('calib/*.png')
for fname in images:
 img = cv2.imread(fname)
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 # 找到棋盤格角點
 ret, corners = cv2.findChessboardCorners(gray, (w,h),None)
 # 如果找到足夠點對,將其存儲起來
 if ret == True:
  cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
  objpoints.append(objp)
  imgpoints.append(corners)
  # 將角點在圖像上顯示
  cv2.drawChessboardCorners(img, (w,h), corners, ret)
  cv2.imshow('findCorners',img)
  cv2.waitKey(1)
cv2.destroyAllWindows()

# 標定
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)

# 去畸變
img2 = cv2.imread('calib/00169.png')
h, w = img2.shape[:2]
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),0,(w,h)) # 自由比例參數(shù)
dst = cv2.undistort(img2, mtx, dist, None, newcameramtx)
# 根據(jù)前面ROI區(qū)域裁剪圖片
#x,y,w,h = roi
#dst = dst[y:y+h, x:x+w]
cv2.imwrite('calibresult.png',dst)

# 反投影誤差
total_error = 0
for i in xrange(len(objpoints)):
 imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
 error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
 total_error += error
print "total error: ", total_error/len(objpoints)

以上是“Python怎么使用OpenCV進行標定”這篇文章的所有內(nèi)容,感謝各位的閱讀!希望分享的內(nèi)容對大家有幫助,更多相關知識,歡迎關注創(chuàng)新互聯(lián)行業(yè)資訊頻道!

網(wǎng)頁標題:Python怎么使用OpenCV進行標定-創(chuàng)新互聯(lián)
標題來源:http://jinyejixie.com/article24/ggice.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站內(nèi)鏈、品牌網(wǎng)站建設商城網(wǎng)站、全網(wǎng)營銷推廣、定制開發(fā)、網(wǎng)站改版

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

商城網(wǎng)站建設
合江县| 温宿县| 理塘县| 尉氏县| 临清市| 墨玉县| 略阳县| 集安市| 石台县| 江油市| 原平市| 建平县| 苏尼特左旗| 丹江口市| 岳阳县| 屯昌县| 云阳县| 深圳市| 青冈县| 沈阳市| 原平市| 桂林市| 根河市| 祥云县| 无锡市| 靖西县| 威宁| 邻水| 新和县| 胶南市| 开远市| 阳城县| 武宣县| 八宿县| 谢通门县| 浮山县| 德化县| 博白县| 牟定县| 黄平县| 永德县|