成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

TensorFlow實現(xiàn)iris數(shù)據(jù)集線性回歸-創(chuàng)新互聯(lián)

本文將遍歷批量數(shù)據(jù)點并讓TensorFlow更新斜率和y截距。這次將使用Scikit Learn的內(nèi)建iris數(shù)據(jù)集。特別地,我們將用數(shù)據(jù)點(x值代表花瓣寬度,y值代表花瓣長度)找到最優(yōu)直線。選擇這兩種特征是因為它們具有線性關系,在后續(xù)結(jié)果中將會看到。本文將使用L2正則損失函數(shù)。

創(chuàng)新互聯(lián)公司-專業(yè)網(wǎng)站定制、快速模板網(wǎng)站建設、高性價比遼中網(wǎng)站開發(fā)、企業(yè)建站全套包干低至880元,成熟完善的模板庫,直接使用。一站式遼中網(wǎng)站制作公司更省心,省錢,快速模板網(wǎng)站建設找我們,業(yè)務覆蓋遼中地區(qū)。費用合理售后完善,十年實體公司更值得信賴。

# 用TensorFlow實現(xiàn)線性回歸算法
#----------------------------------
#
# This function shows how to use TensorFlow to
# solve linear regression.
# y = Ax + b
#
# We will use the iris data, specifically:
# y = Sepal Length
# x = Petal Width

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph()

# Create graph
sess = tf.Session()

# Load the data
# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])

# 批量大小
batch_size = 25

# Initialize 占位符
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

# 模型變量
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))

# 增加線性模型,y=Ax+b
model_output = tf.add(tf.matmul(x_data, A), b)

# 聲明L2損失函數(shù),其為批量損失的平均值。
loss = tf.reduce_mean(tf.square(y_target - model_output))

# 聲明優(yōu)化器 學習率設為0.05
my_opt = tf.train.GradientDescentOptimizer(0.05)
train_step = my_opt.minimize(loss)

# 初始化變量
init = tf.global_variables_initializer()
sess.run(init)

# 批量訓練遍歷迭代
# 迭代100次,每25次迭代輸出變量值和損失值
loss_vec = []
for i in range(100):
  rand_index = np.random.choice(len(x_vals), size=batch_size)
  rand_x = np.transpose([x_vals[rand_index]])
  rand_y = np.transpose([y_vals[rand_index]])
  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
  temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
  loss_vec.append(temp_loss)
  if (i+1)%25==0:
    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))
    print('Loss = ' + str(temp_loss))

# 抽取系數(shù)
[slope] = sess.run(A)
[y_intercept] = sess.run(b)

# 創(chuàng)建最佳擬合直線
best_fit = []
for i in x_vals:
 best_fit.append(slope*i+y_intercept)

# 繪制兩幅圖
# 擬合的直線
plt.plot(x_vals, y_vals, 'o', label='Data Points')
plt.plot(x_vals, best_fit, 'r-', label='Best fit line', linewidth=3)
plt.legend(loc='upper left')
plt.title('Sepal Length vs Pedal Width')
plt.xlabel('Pedal Width')
plt.ylabel('Sepal Length')
plt.show()

# Plot loss over time
# 迭代100次的L2正則損失函數(shù)
plt.plot(loss_vec, 'k-')
plt.title('L2 Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('L2 Loss')
plt.show()

文章標題:TensorFlow實現(xiàn)iris數(shù)據(jù)集線性回歸-創(chuàng)新互聯(lián)
文章轉(zhuǎn)載:http://jinyejixie.com/article20/peijo.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供軟件開發(fā)、靜態(tài)網(wǎng)站、品牌網(wǎng)站制作、做網(wǎng)站、網(wǎng)站內(nèi)鏈、企業(yè)網(wǎng)站制作

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

外貿(mào)網(wǎng)站制作
杭锦后旗| 抚远县| 和静县| 郁南县| 武清区| 金平| 瓦房店市| 淅川县| 广丰县| 丹阳市| 沾化县| 辽阳市| 乌鲁木齐县| 香河县| 黄平县| 南部县| 安化县| 互助| 濮阳县| 白沙| 萍乡市| 阜康市| 方正县| 泸溪县| 轮台县| 晋州市| 新乡市| 岳阳市| 德令哈市| 界首市| 炎陵县| 比如县| 新沂市| 边坝县| 长寿区| 武冈市| 安福县| 乐山市| 封丘县| 五华县| 明溪县|