成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

線性回歸python函數(shù) python線性回歸算法

如何用Python進行線性回歸以及誤差分析

如何用Python進行線性回歸以及誤差分析

目前創(chuàng)新互聯(lián)公司已為上1000+的企業(yè)提供了網(wǎng)站建設(shè)、域名、虛擬空間、網(wǎng)站托管運營、企業(yè)網(wǎng)站設(shè)計、張家界網(wǎng)站維護等服務(wù),公司將堅持客戶導(dǎo)向、應(yīng)用為本的策略,正道將秉承"和諧、參與、激情"的文化,與客戶和合作伙伴齊心協(xié)力一起成長,共同發(fā)展。

 如果你想要重命名,只需要按下:

CTRL-b

狀態(tài)條將會改變,這時你將可以重命名當(dāng)前的窗口

一旦在一個會話中創(chuàng)建多個窗口,我們需要在這些窗口間移動的辦法。窗口像數(shù)組一樣組織在一起,從0開始用數(shù)字標(biāo)記每個窗口,想要快速跳轉(zhuǎn)到其余窗口:

CTRL-b 《窗口號》

如果我們給窗口起了名字,我們可以使用下面的命令找到它們:

CTRL-b f

也可以列出所有窗口:

CTRL-b w

python中predict函數(shù)在哪個庫

一般來說predict函數(shù)都是要import一些機器學(xué)習(xí)算法庫后用于建模后預(yù)測用的。比如說sklearn庫里面的回歸,分類,聚類等等都是有對應(yīng)predict函數(shù)的。

舉個最簡單的例子:

線性回歸的函數(shù)可以在C:\Python27\Lib\site-packages\sklearn\linear_model文件夾中找到。腳本名為base.py,predict()在187行就有。

如何用python實現(xiàn)含有虛擬自變量的回歸

利用python進行線性回歸

理解什么是線性回歸

線性回歸也被稱為最小二乘法回歸(Linear Regression, also called Ordinary Least-Squares (OLS) Regression)。它的數(shù)學(xué)模型是這樣的:

y = a+ b* x+e

其中,a 被稱為常數(shù)項或截距;b 被稱為模型的回歸系數(shù)或斜率;e 為誤差項。a 和 b 是模型的參數(shù)。

當(dāng)然,模型的參數(shù)只能從樣本數(shù)據(jù)中估計出來:

y'= a' + b'* x

我們的目標(biāo)是選擇合適的參數(shù),讓這一線性模型最好地擬合觀測值。擬合程度越高,模型越好。

那么,接下來的問題就是,我們?nèi)绾闻袛鄶M合的質(zhì)量呢?

這一線性模型可以用二維平面上的一條直線來表示,被稱為回歸線。

模型的擬合程度越高,也即意味著樣本點圍繞回歸線越緊密。

如何計算樣本點與回歸線之間的緊密程度呢?

高斯和勒讓德找到的方法是:被選擇的參數(shù),應(yīng)該使算出來的回歸線與觀測值之差的平房和最小。用函數(shù)表示為:

這被稱為最小二乘法。最小二乘法的原理是這樣的:當(dāng)預(yù)測值和實際值距離的平方和最小時,就選定模型中的兩個參數(shù)(a 和 b)。這一模型并不一定反映解釋變量和反應(yīng)變量真實的關(guān)系。但它的計算成本低;相比復(fù)雜模型更容易解釋。

模型估計出來后,我們要回答的問題是:

我們的模型擬合程度如何?或者說,這個模型對因變量的解釋力如何?(R2)

整個模型是否能顯著預(yù)測因變量的變化?(F 檢驗)

每個自變量是否能顯著預(yù)測因變量的變化?(t 檢驗)

首先回答第一個問題。為了評估模型的擬合程度如何,我們必須有一個可以比較的基線模型。

如果讓你預(yù)測一個人的體重是多少?在沒有任何額外信息的情況下,你可能會用平均值來預(yù)測,盡管會存在一定誤差,但總比瞎猜好。

現(xiàn)在,如果你知道他的身高信息,你的預(yù)測值肯定與平均值不一樣。額外信息相比平均值更能準(zhǔn)確地預(yù)測被預(yù)測的變量的能力,就代表模型的解釋力大小。

上圖中,SSA 代表由自變量 x 引起的 y 的離差平方和,即回歸平方和,代表回歸模型的解釋力;SSE 代表由隨機因素引起的 y 的離差平方和,即剩余平方和,代表回歸模型未能解釋的部分;SST 為總的離差平方和,即我們僅憑 y 的平均值去估計 y 時所產(chǎn)生的誤差。

用模型能夠解釋的變異除以總的變異就是模型的擬合程度:

R2=SSA/SST=1-SSE

R2(R 的平方)也被稱為決定系數(shù)或判定系數(shù)。

第二個問題,我們的模型是否顯著預(yù)測了 y 的變化?

假設(shè) y 與 x 的線性關(guān)系不明顯,那么 SSA 相對 SSE 占有較大的比例的概率則越小。換句話說,在 y 與 x 無線性關(guān)系的前提下,SSA 相對 SSE 的占比越高的概率是越小的,這會呈現(xiàn)一定的概率分布。統(tǒng)計學(xué)家告訴我們它滿足 F 分布,就像這樣:

如果 SSA 相對 SSE 占比較大的情況出現(xiàn)了,比如根據(jù) F 分布,這個值出現(xiàn)的概率小于 5%。那么,我們最好是拒絕 y 與 x 線性關(guān)系不顯著的原始假設(shè),認(rèn)為二者存在顯著的線性關(guān)系較為合適。

第三個問題,每個自變量是否能顯著預(yù)測因變量的變化?換句話說,回歸系數(shù)是否顯著?

回歸系數(shù)的顯著性檢驗是圍繞回歸系數(shù)的抽樣分布(t 分布)來進行的,推斷過程類似于整個模型的檢驗過程,不贅言。

實際上,對于只有一個自變量的一元線性模型,模型的顯著性檢驗和回歸系數(shù)的檢驗是一致的,但對于多元線性模型來說,二者就不能等價了。

利用 statsmodels 進行最小二乘回歸

#導(dǎo)入相應(yīng)模塊

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: import statsmodels.api as sm

#將數(shù)據(jù)導(dǎo)入 pandas 的 dataframe 對象,第一列(年份)作為行標(biāo)簽

In [4]: df=pd.read_csv('/Users/xiangzhendong/Downloads/vincentarelbundock-Rdatasets-1218370/csv/datasets/longley.csv', index_col=0)

#查看頭部數(shù)據(jù)

In [5]: df.head()

Out[5]:

GNP.deflator ? ? ?GNP ?Unemployed ?Armed.Forces ?Population ?Year ?\

1947 ? ? ? ? ?83.0 ?234.289 ? ? ? 235.6 ? ? ? ? 159.0 ? ? 107.608 ?1947

1948 ? ? ? ? ?88.5 ?259.426 ? ? ? 232.5 ? ? ? ? 145.6 ? ? 108.632 ?1948

1949 ? ? ? ? ?88.2 ?258.054 ? ? ? 368.2 ? ? ? ? 161.6 ? ? 109.773 ?1949

1950 ? ? ? ? ?89.5 ?284.599 ? ? ? 335.1 ? ? ? ? 165.0 ? ? 110.929 ?1950

1951 ? ? ? ? ?96.2 ?328.975 ? ? ? 209.9 ? ? ? ? 309.9 ? ? 112.075 ?1951

Employed

1947 ? ?60.323

1948 ? ?61.122

1949 ? ?60.171

1950 ? ?61.187

1951 ? ?63.221

#設(shè)置預(yù)測變量和結(jié)果變量,用 GNP 預(yù)測 Employed

In [6]: y=df.Employed #結(jié)果變量

In [7]: X=df.GNP #預(yù)測變量

#為模型增加常數(shù)項,即回歸線在 y 軸上的截距

In [8]: X=sm.add_constant(X)

#執(zhí)行最小二乘回歸,X 可以是 numpy array 或 pandas dataframe(行數(shù)等于數(shù)據(jù)點個數(shù),列數(shù)為預(yù)測變量個數(shù)),y 可以是一維數(shù)組(numpy array)或 pandas series

In [10]: est=sm.OLS(y,X)

使用 OLS 對象的 fit() 方法來進行模型擬合

In [11]: est=est.fit()

#查看模型擬合的結(jié)果

In [12]: est.summary()

Out[12]:

#查看最終模型的參數(shù)

In [13]: est.params

Out[13]:

const ? ?51.843590

GNP ? ? ? 0.034752

dtype: float64

#選擇 100 個從最小值到最大值平均分布(equally spaced)的數(shù)據(jù)點

In [14]: X_prime=np.linspace(X.GNP.min(), X.GNP.max(),100)[:,np.newaxis]

In [15]: X_prime=sm.add_constant(X_prime)

#計算預(yù)測值

In [16]: y_hat=est.predict(X_prime)

In [17]: plt.scatter(X.GNP, y, alpha=0.3) #畫出原始數(shù)據(jù)

#分別給 x 軸和 y 軸命名

In [18]: plt.xlabel("Gross National Product")

In [19]: plt.ylabel("Total Employment")

In [20]: plt.plot(X_prime[:,1], y_hat, 'r', alpha=0.9) #添加回歸線,紅色

多元線性回歸(預(yù)測變量不止一個)

我們用一條直線來描述一元線性模型中預(yù)測變量和結(jié)果變量的關(guān)系,而在多元回歸中,我們將用一個多維(p)空間來擬合多個預(yù)測變量。下面表現(xiàn)了兩個預(yù)測變量的三維圖形:商品的銷量以及在電視和廣播兩種不同媒介的廣告預(yù)算。

數(shù)學(xué)模型是:

Sales = beta_0 + beta_1*TV + beta_2*Radio

圖中,白色的數(shù)據(jù)點是平面上的點,黑色的數(shù)據(jù)點事平面下的點。平面的顏色是由對應(yīng)的商品銷量的高低決定的,高是紅色,低是藍(lán)色。

利用 statsmodels 進行多元線性回歸

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: import statsmodels.api as sm

In [4]: df_adv=pd.read_csv('g.csv',index_col=0)

In [6]: X=df_adv[['TV','Radio']]

In [7]: y=df_adv['Sales']

In [8]: df_adv.head()

Out[8]:

TV ?Radio ?Newspaper ?Sales

1 ?230.1 ? 37.8 ? ? ? 69.2 ? 22.1

2 ? 44.5 ? 39.3 ? ? ? 45.1 ? 10.4

3 ? 17.2 ? 45.9 ? ? ? 69.3 ? ?9.3

4 ?151.5 ? 41.3 ? ? ? 58.5 ? 18.5

5 ?180.8 ? 10.8 ? ? ? 58.4 ? 12.9

In [9]: X=sm.add_constant(X)

In [10]: est=sm.OLS(y,X).fit()

In [11]: est.summary()

Out[11]:

你也可以使用 statsmodels 的 formula 模塊來建立多元回歸模型

In [12]: import statsmodels.formula.api as smf

In [13]: est=smf.ols(formula='Sales ~ TV + Radio',data=df_adv).fit()

處理分類變量

性別或地域都屬于分類變量。

In [15]: df= pd.read_csv('httd.edu/~tibs/ElemStatLearn/datasets/SAheart.data', index_col=0)

In [16]: X=df.copy()

利用 dataframe 的 pop 方法將 chd 列單獨提取出來

In [17]: y=X.pop('chd')

In [18]: df.head()

Out[18]:

sbp ?tobacco ? ldl ?adiposity ?famhist ?typea ?obesity ?alcohol ?\

row.names

1 ? ? ? ? ?160 ? ?12.00 ?5.73 ? ? ?23.11 ?Present ? ? 49 ? ?25.30 ? ?97.20

2 ? ? ? ? ?144 ? ? 0.01 ?4.41 ? ? ?28.61 ? Absent ? ? 55 ? ?28.87 ? ? 2.06

3 ? ? ? ? ?118 ? ? 0.08 ?3.48 ? ? ?32.28 ?Present ? ? 52 ? ?29.14 ? ? 3.81

4 ? ? ? ? ?170 ? ? 7.50 ?6.41 ? ? ?38.03 ?Present ? ? 51 ? ?31.99 ? ?24.26

5 ? ? ? ? ?134 ? ?13.60 ?3.50 ? ? ?27.78 ?Present ? ? 60 ? ?25.99 ? ?57.34

age ?chd

row.names

1 ? ? ? ? ? 52 ? ?1

2 ? ? ? ? ? 63 ? ?1

3 ? ? ? ? ? 46 ? ?0

4 ? ? ? ? ? 58 ? ?1

5 ? ? ? ? ? 49 ? ?1

In [19]: y.groupby(X.famhist).mean()

Out[19]:

famhist

Absent ? ? 0.237037

Present ? ?0.500000

Name: chd, dtype: float64

In [20]: import statsmodels.formula.api as smf

In [21]: df['famhist_ord']=pd.Categorical(df.famhist).labels

In [22]: est=smf.ols(formula="chd ~ famhist_ord", data=df).fit()

分類變量的編碼方式有許多,其中一種編碼方式是虛擬變量編碼(dummy-encoding),就是把一個 k 個水平的分類變量編碼成 k-1 個二分變量。在 statsmodels 中使用 C 函數(shù)實現(xiàn)。

In [24]: est=smf.ols(formula="chd ~ C(famhist)", data=df).fit()

In [26]: est.summary()

Out[26]:

處理交互作用

隨著教育年限(education)的增長,薪酬 (wage) 會增加嗎?這種影響對男性和女性而言是一樣的嗎?

這里的問題就涉及性別與教育年限的交互作用。

換言之,教育年限對薪酬的影響是男女有別的。

#導(dǎo)入相關(guān)模塊

In [1]: import pandas as pd

In [2]: import numpy as np

In [4]: import statsmodels.api as sm

#導(dǎo)入數(shù)據(jù),存入 dataframe 對象

In [5]: df=pd.read_csv('/Users/xiangzhendong/Downloads/pydatafromweb/wages.csv')

In [6]: df[['Wage','Education','Sex']].tail()

Out[6]:

Wage ?Education ?Sex

529 ?11.36 ? ? ? ? 18 ? ?0

530 ? 6.10 ? ? ? ? 12 ? ?1

531 ?23.25 ? ? ? ? 17 ? ?1

532 ?19.88 ? ? ? ? 12 ? ?0

533 ?15.38 ? ? ? ? 16 ? ?0

由于性別是一個二分變量,我們可以繪制兩條回歸線,一條是 sex=0(男性),一條是 sex=1(女性)

#繪制散點圖

In [7]: plt.scatter(df.Education,df.Wage, alpha=0.3)

In [9]: plt.xlabel('education')

In [10]: plt.ylabel('wage')

#linspace 的作用是生成從最小到最大的均勻分布的 n 個數(shù)

In [17]: education_linspace=np.linspace(df.Education.min(), df.Education.max(),100)

In [12]: import statsmodels.formula.api as smf

In [13]: est=smf.ols(formula='Wage ~ Education + Sex', data=df).fit()

In [18]: plt.plot(education_linspace, est.params[0]+est.params[1]education_linspace+est.params[2]0, 'r')

In [19]: plt.plot(education_linspace, est.params[0]+est.params[1]education_linspace+est.params[2]1, 'g')

以上兩條線是平行的。這是因為分類變量只影響回歸線的截距,不影響斜率。

接下來我們可以為回歸模型增加交互項來探索交互效應(yīng)。也就是說,對于兩個類別,回歸線的斜率是不一樣的。

In [32]: plt.scatter(df.Education,df.Wage, alpha=0.3)

In [33]: plt.xlabel('education')

In [34]: plt.ylabel('wage')

#使用*代表我們的回歸模型中除了交互效應(yīng),也包括兩個變量的主效應(yīng);如果只想看交互效應(yīng),可以用:代替,但通常不會只看交互效應(yīng)

In [35]: est=smf.ols(formula='Wage ~ Sex*Education', data=df).fit()

In [36]: plt.plot(education_linspace, est.params[0]+est.params[1]0+est.params[2]education_linspace+est.params[3]0education_linspace, 'r')

In [37]: plt.plot(education_linspace, est.params[0]+est.params[1]1+est.params[2]education_linspace+est.params[3]1education_linspace, 'g')

參考資料:

DataRobot | Ordinary Least Squares in Python

DataRoboe | Multiple Regression using Statsmodels

AnalyticsVidhya | 7 Types of Regression Techniques you should know!

當(dāng)前文章:線性回歸python函數(shù) python線性回歸算法
網(wǎng)站鏈接:http://jinyejixie.com/article14/doohhge.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供移動網(wǎng)站建設(shè)、用戶體驗、網(wǎng)站設(shè)計、響應(yīng)式網(wǎng)站、網(wǎng)站排名、App開發(fā)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

成都做網(wǎng)站
安泽县| 舒兰市| 乌恰县| 木里| 香河县| 常德市| 滦南县| 崇礼县| 二连浩特市| 安福县| 珠海市| 宜春市| 榆中县| 海口市| 开原市| 湘西| 蕉岭县| 如东县| 雷波县| 棋牌| 廉江市| 定结县| 普兰店市| 陆川县| 高州市| 华蓥市| 大英县| 拉孜县| 丰都县| 那坡县| 临邑县| 内黄县| 吴江市| 五寨县| 深泽县| 桃园县| 遵义县| 浦城县| 浑源县| 全州县| 营口市|