今天開始琢磨用Python畫圖,沒使用之前是一臉懵的,我使用的開發(fā)環(huán)境是Pycharm,這個輸出的是一行行命令,這個圖畫在哪里呢?
專注于為中小企業(yè)提供成都網(wǎng)站設(shè)計、網(wǎng)站制作服務(wù),電腦端+手機(jī)端+微信端的三站合一,更高效的管理,為中小企業(yè)嶗山免費做網(wǎng)站提供優(yōu)質(zhì)的服務(wù)。我們立足成都,凝聚了一批互聯(lián)網(wǎng)行業(yè)人才,有力地推動了上千企業(yè)的穩(wěn)健成長,幫助中小企業(yè)通過網(wǎng)站建設(shè)實現(xiàn)規(guī)模擴(kuò)充和轉(zhuǎn)變。
搜索之后發(fā)現(xiàn),它會彈出一個對話框,然后就開始畫了,比如下圖
第一個常用的庫是Turtle,它是Python語言中一個很流行的繪制圖像的函數(shù)庫,這個詞的意思就是烏龜,你可以想象下一個小烏龜在一個x和y軸的平面坐標(biāo)系里,從原點開始根據(jù)指令控制,爬行出來就是繪制的圖形了。
它最常用的指令就是旋轉(zhuǎn)和移動,比如畫個圓,就是繞著圓心移動;再比如上圖這個怎么畫呢,其實主要就兩個命令:
turtle.forward(200)
turtle.left(170)
第一個命令是移動200個單位并畫出來軌跡
第二個命令是畫筆順時針轉(zhuǎn)170度,注意此時并沒有移動,只是轉(zhuǎn)角度
然后呢? 循環(huán)重復(fù)就畫出來這個圖了
好玩吧。
有需要仔細(xì)研究的可以看下這篇文章 ,這個牛人最后用這個庫畫個移動的鐘表,太贊了。
Turtle雖好玩,但是我想要的是我給定數(shù)據(jù),然后讓它畫圖,這里就找到另一個常用的畫圖的庫了。
Matplotlib是python最著名的繪圖庫,它提供了一整套和matlab相似的命令A(yù)PI,十分適合交互式地行制圖。其中,matplotlib的pyplot模塊一般是最常用的,可以方便用戶快速繪制二維圖表。
使用起來也挺簡單,
首先import matplotlib.pyplot as plt?導(dǎo)入畫圖的圖。
然后給定x和y,用這個命令plt.plot(x, y)就能畫圖了,接著用plt.show()就可以把圖形展示出來。
接著就是各種完善,比如加標(biāo)題,設(shè)定x軸和y軸標(biāo)簽,范圍,顏色,網(wǎng)格等等,在 這篇文章里介紹的很詳細(xì)。
現(xiàn)在互聯(lián)網(wǎng)的好處就是你需要什么內(nèi)容,基本上都能搜索出來,而且還是免費的。
我為什么要研究這個呢?當(dāng)然是為了用,比如我把比特幣的曲線自己畫出來可好?
假設(shè)現(xiàn)在有個數(shù)據(jù)csv文件,一列是日期,另一列是比特幣的價格,那用這個命令畫下:
這兩列數(shù)據(jù)讀到pandas中,日期為df['time']列,比特幣價格為df['ini'],那我只要使用如下命令
plt.plot(df['time'], df['ini'])
plt.show()
就能得到如下圖:
自己畫的是不是很香,哈哈!
然后呢,我在上篇文章 中介紹過求Ahr999指數(shù),那可不可以也放到這張圖中呢?不就是加一條命令嘛
plt.plot(df['time'], df['Ahr999'])
圖形如下:
但是,Ahr999指數(shù)怎么就一條線不動啊,?原來兩個Y軸不一致,顯示出來太怪了,需要用多Y軸,問題來了。
繼續(xù)谷歌一下,把第二個Y軸放右邊就行了,不過呢得使用多圖,重新繪制
fig = plt.figure() # 多圖
ax1 = fig.add_subplot(111)
ax1.plot(df['time'], df['ini'], label="BTC price")? #?繪制第一個圖比特幣價格
ax1.set_ylabel('BTC price') #?加上標(biāo)簽
# 第二個直接對稱就行了
ax2 = ax1.twinx()#?在右邊增加一個Y軸
ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999")??#?繪制第二個圖Ahr999指數(shù),紅色
ax2.set_ylim([0, 50])# 設(shè)定第二個Y軸范圍
ax2.set_ylabel('ahr999')
plt.grid(color="k", linestyle=":")# 網(wǎng)格
fig.legend(loc="center")#圖例
plt.show()
跑起來看看效果,雖然丑了點,但終于跑通了。
這樣就可以把所有指數(shù)都繪制到一張圖中,等等,三個甚至多個Y軸怎么加?這又是一個問題,留給愛思考愛學(xué)習(xí)的你。
有了自己的數(shù)據(jù),建立自己的各個指數(shù),然后再放到圖形界面中,同時針對異常情況再自動進(jìn)行提醒,比如要抄底了,要賣出了,用程序做出自己的晴雨表。
不寫出y=f(x)這樣的表達(dá)式,由隱函數(shù)的等式直接繪制圖像,以x2+y2+xy=1的圖像為例,使用sympy間接調(diào)用matplotlib工具的代碼和該二次曲線圖像如下(注意python里的乘冪符號是**而不是^,還有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),這幾點和matlab的區(qū)別很大)
直接在命令提示行的里面運行代碼的效果
from sympy import *;
x,y=symbols('x y');
plotting.plot_implicit(x**2+y**2+x*y-1);
raw_input獲取的輸入是字符串,不能直接用np.array,需要用split進(jìn)行切分,然后強制轉(zhuǎn)化成數(shù)值類型,才能用plot函數(shù)
我把你的代碼稍微修改了一下,可能不太漂亮,不過能運行了
x=[1,2,3]
a = raw_input('function')
a = a.split(' ')#依空格對字符串a(chǎn)進(jìn)行切分,如果是用逗號分隔,則改成a.split(',')
b = []
for i in range(len(a)):#把切分好的字符強制轉(zhuǎn)化成int類型,如果是小數(shù),將int改為float
b.append(int(a[i]))
plt.plot(x, b, label='x', color="green", linewidth=1)
接受自己的普通,然后全力以赴的出眾,告訴自己要努力,但不要著急....
當(dāng)然, 這個結(jié)果并不是我真正想要的,Pass, 太丑了!
好吧,安排,我們先看下實現(xiàn)后的效果!
這個效果自然就比之前的好多了!
實現(xiàn)python散點圖繪制需要用到matplotlib庫, matplotlib庫是專門用于可視化繪圖的工具庫;學(xué)習(xí)一個新的庫當(dāng)然看官方文檔了:
實現(xiàn)思路:
matplotlib.pyplot.scatter() 函數(shù)是專門繪制散點圖的函數(shù):
matplotlib.pyplot.scatter ( x, y , s=None , c=None , marker=None , cmap=None , norm=None , vmin=None , vmax=None , alpha=None , linewidths=None , verts=None , edgecolors=None , ***, data=None , ** kwargs ) **
plt.scatter(observation, estimate, c=Z1, cmap=colormap, marker=".", s=marker_size, norm=colors.LogNorm(vmin=Z1.min(), vmax=0.5 * Z1.max()))
其中:
1、c參數(shù)為計算的散點密度;
2、cmap為色帶(matplotlib里面自帶了很多色帶可供選擇),參見:
3、由于計算的散點密度數(shù)值大小分散,因此利用norm參數(shù)對散點密度Z1進(jìn)行歸一化處理(歸一化方式很多,參見colors類),并給歸一化方式設(shè)置色帶刻度的最大最小值vmin和vmax(一般這兩個參數(shù)就是指定散點密度的最小值和最大值),這樣就建立起了密度與色帶的映射關(guān)系。
(這里的結(jié)果與前面展示的相比改變了計算散點密度的半徑:radius = 3以及繪制散點圖的散點大小marksize)
作者能力水平有限,歡迎各位批評指正!
本文題目:python畫點函數(shù)圖像 python畫函數(shù)圖像顆粒狀區(qū)域
分享鏈接:http://jinyejixie.com/article12/dosgedc.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供外貿(mào)網(wǎng)站建設(shè)、微信小程序、營銷型網(wǎng)站建設(shè)、品牌網(wǎng)站建設(shè)、搜索引擎優(yōu)化、網(wǎng)站設(shè)計
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)