成人午夜视频全免费观看高清-秋霞福利视频一区二区三区-国产精品久久久久电影小说-亚洲不卡区三一区三区一区

怎么在JavaScript中利用遞歸調(diào)用匿名函數(shù)

怎么在JavaScript中利用遞歸調(diào)用匿名函數(shù)?相信很多沒有經(jīng)驗的人對此束手無策,為此本文總結(jié)了問題出現(xiàn)的原因和解決方法,通過這篇文章希望你能解決這個問題。

公司主營業(yè)務(wù):網(wǎng)站設(shè)計制作、成都做網(wǎng)站、移動網(wǎng)站開發(fā)等業(yè)務(wù)。幫助企業(yè)客戶真正實現(xiàn)互聯(lián)網(wǎng)宣傳,提高企業(yè)的競爭能力。創(chuàng)新互聯(lián)是一支青春激揚、勤奮敬業(yè)、活力青春激揚、勤奮敬業(yè)、活力澎湃、和諧高效的團(tuán)隊。公司秉承以“開放、自由、嚴(yán)謹(jǐn)、自律”為核心的企業(yè)文化,感謝他們對我們的高要求,感謝他們從不同領(lǐng)域給我們帶來的挑戰(zhàn),讓我們激情的團(tuán)隊有機會用頭腦與智慧不斷的給客戶帶來驚喜。創(chuàng)新互聯(lián)推出芒市免費做網(wǎng)站回饋大家。

以一個簡單的階乘計算為例:

function factorial(n) { 
  if (n <= 1) {
    return 1;
  } else {
    return n * factorial(n-1);
  }
}

我們可以看出,遞歸就是在函數(shù)內(nèi)部調(diào)用對自身的調(diào)用。 那么問題來了,我們知道在Javascript中,有一類函數(shù)叫做匿名函數(shù),沒有名稱,怎么調(diào)用呢?當(dāng)然你可以說,可以把匿名函數(shù)賦值給一個常量:

const factorial = function(n){ 
   if (n <= 1) {
    return 1;
  } else {
    return n * factorial(n-1);
  }
}

這當(dāng)然是可以的。但是對于一些像,函數(shù)編寫時并不知道自己將要賦值給一個明確的變量的情況時,就會遇到麻煩了。如:

(function(f){
  f(10);
})(function(n){
   if (n <= 1) {
    return 1;
  } else {
    return n * factorial(n-1);//太依賴于上下文變量名
  }
})
//Uncaught ReferenceError: factorial is not defined(…)

那么存不存在一種完全不需要這種給予準(zhǔn)確函數(shù)名(函數(shù)引用變量名)的方式呢?

arguments.callee

我們知道在任何一個function內(nèi)部,都可以訪問到一個叫做arguments的變量。

(function(){console.dir(arguments)})(1,2)

屏幕快照 2016-09-18 下午10.53.58

打印出這個arguments變量的細(xì)節(jié),可以看出他是Arguments的一個實例,而且從數(shù)據(jù)結(jié)構(gòu)上來講,他是一個類數(shù)組。他除了類數(shù)組的元素成員和length屬性外,還有一個callee方法。 那么這個callee方法是做什么的呢?我們來看下MDN

callee 是 arguments 對象的屬性。在該函數(shù)的函數(shù)體內(nèi),它可以指向當(dāng)前正在執(zhí)行的函數(shù)。當(dāng)函數(shù)是匿名函數(shù)時,這是很有用的, 比如沒有名字的函數(shù)表達(dá)式 (也被叫做”匿名函數(shù)”)。

哈哈,很明顯這就是我們想要的。接下來就是:

(function(f){
  console.log(f(10));
})(function(n){
   if (n <= 1) {
    return 1;
  } else {
    return n * arguments.callee(n-1);
  }
})
//output: 3628800

但是還有一個問題,MDN的文檔里明確指出

警告:在 ECMAScript 第五版 (ES5) 的 嚴(yán)格模式 中禁止使用 arguments.callee()。

哎呀,原來在ES5的use strict;中不給用啊,那么在ES6中,我們換個ES6的arrow function寫寫看:

((f) => console.log(f(10)))(
  (n) => n <= 1? 1: arguments.callee(n-1))
//Uncaught ReferenceError: arguments is not defined(…)

有一定ES6基礎(chǔ)的同學(xué),估計老早就想說了,箭頭函數(shù)就是個簡寫形式的函數(shù)表達(dá)式,并且它擁有詞法作用域的this值(即不會新產(chǎn)生自己作用域下的this, arguments, super 和 new.target等對象),且都是匿名的。

那怎么辦呢?嘿嘿,我們需要借助一點FP的思想了。

Y組合子

關(guān)于Y Combinator的文章可謂數(shù)不勝數(shù),這個由師從希爾伯特的著名邏輯學(xué)家Haskell B.Curry(Haskell語言就是以他命名的,而函數(shù)式編程語言里面的Curry手法也是以他命名)“發(fā)明”出來的組合算子(Haskell是研究組合邏輯(combinatory logic)的)仿佛有種神奇的魔力,它能夠算出給定lambda表達(dá)式(函數(shù))的不動點。從而使得遞歸成為可能。

這里需要告知一個概念不動點組合子

不動點組合子(英語:Fixed-point combinator,或不動點算子)是計算其他函數(shù)的一個不動點的高階函數(shù)。

函數(shù)f的不動點是一個值x使得f(x) = x。例如,0和1是函數(shù) f(x) = x^2 的不動點,因為 0^2 = 0而 1^2 = 1。鑒于一階函數(shù)(在簡單值比如整數(shù)上的函數(shù))的不動點是個一階值,高階函數(shù)f的不動點是另一個函數(shù)g使得f(g) = g。那么,不動點算子是任何函數(shù)fix使得對于任何函數(shù)f都有

f(fix(f)) = fix(f). 不動點組合子允許定義匿名的遞歸函數(shù)。它們可以用非遞歸的lambda抽象來定義.

在無類型lambda演算中眾所周知的(可能是最簡單的)不動點組合子叫做Y組合子。

接下來,我們通過一定的演算推到下這個Y組合子。

// 首先我們定義這樣一個可以用作求階乘的遞歸函數(shù)
const fact = (n) => n<=1?1:n*fact(n-1) 
console.log(fact(5)) //120
// 既然不讓這個函數(shù)有名字,我們就先給這個遞歸方法一個叫做self的代號
// 首先是一個接受這個遞歸函數(shù)作為參數(shù)的一個高階函數(shù)
const fact_gen = (self) => (n) => n<=1?1:n*self(n-1) 
console.log(fact_gen(fact)(5)) //120
// 我們是將遞歸方法和參數(shù)n,都傳入遞歸方法,得到這樣一個函數(shù)
const fact1 = (self, n) => n<=1?1:n*self(self, n-1) 
console.log(fact1(fact1, 5)) //120
// 我們將fact1 柯理化,得到fact2
const fact2 = (self) => (n) => n<=1?1:n*self(self)(n-1) 
console.log(fact2(fact2)(5)) //120
// 驚喜的事發(fā)生了,如果我們將self(self)看做一個整體
// 作為參數(shù)傳入一個新的函數(shù): (g)=> n<= 1? 1: n*g(n-1)
const fact3 = (self) => (n) => ((g)=>n <= 1?1:n*g(n-1))(self(self)) 
console.log(fact3(fact3)(5)) //120
// fact3 還有一個問題是這個新抽離出來的函數(shù),是上下文有關(guān)的
// 他依賴于上文的n, 所以我們將n作為新的參數(shù)
// 重新構(gòu)造出這么一個函數(shù): (g) => (m) => m<=1?1:m*g(m-1)
const fact4 = (self) => (n) => ((g) => (m) => m<=1?1:m*g(m-1))(self(self))(n) 
console.log(fact4(fact4)(5))
// 很明顯fact4中的(g) => (m) => m<=1?1:m*g(m-1) 就是 fact_gen
// 這就很有意思啦,這個fact_gen上下文無關(guān)了, 可以作為參數(shù)傳入了
const weirdFunc = (func_gen) => (self) => (n) => func_gen(self(self))(n) 
console.log(weirdFunc(fact_gen)(weirdFunc(fact_gen))(5)) //120
// 此時我們就得到了一種Y組合子的形式了
const Y_ = (gen) => (f) => (n)=> gen(f(f))(n)
// 構(gòu)造一個階乘遞歸也很easy了
const factorial = Y_(fact_gen) 
console.log(factorial(factorial)(5)) //120
// 但上面這個factorial并不是我們想要的
// 只是一種fact2,fact3,fact4的形式
// 我們肯定希望這個函數(shù)的調(diào)用是factorial(5)
// 沒問題,我們只需要把定義一個 f' = f(f) = (f)=>f(f)
// eg. const factorial = fact2(fact2)
const Y = gen => n => (f=>f(f))(gen)(n) 
console.log(Y(fact2)(5)) //120 
console.log(Y(fact3)(5)) //120 
console.log(Y(fact4)(5)) //120

推導(dǎo)到這里,是不是已經(jīng)感覺到脊背嗖涼了一下,反正筆者我第一次接觸在康托爾、哥德爾、圖靈——永恒的金色對角線這篇文章里接觸到的時候,整個人瞬間被這種以數(shù)學(xué)語言去表示程序的方式所折服。

來,我們回憶下,我們最終是不是得到了一個不定點算子,這個算子可以找出一個高階函數(shù)的不動點f(Y(f)) = Y(f)。 將一個函數(shù)傳入一個算子(函數(shù)),得到一個跟自己功能一樣,但又并不是自己的函數(shù),這個說法有些拗口,但又味道十足。

好了,我們回到最初的問題,怎么完成匿名函數(shù)的遞歸呢?有了Y組合子就很簡單了:

(f => f(f))
(fact => n => n <= 1 ? 1 : n * fact(fact)(n - 1)) 
(5)
// 120

曾經(jīng)看到過一些說法是”最讓人沮喪是,當(dāng)你推導(dǎo)出它(Y組合子)后,完全沒法兒通過只看它一眼就說出它到底是想干嘛”,而我恰恰認(rèn)為這就是函數(shù)式編程的魅力,也是數(shù)學(xué)的魅力所在,精簡優(yōu)雅的公式,背后隱藏著復(fù)雜有趣的推導(dǎo)過程。

總結(jié)

務(wù)實點兒講,匿名函數(shù)的遞歸調(diào)用,在日常的js開發(fā)中,用到的真的很少。把這個問題拿出來講,主要是想引出對arguments的一些講解和對Y組合子這個概念的一個普及。

但既然講都講了,我們真的用到的話,該怎么選擇呢?來,我們喜聞樂見的benchmark下: 分別測試:

// fact 
fact(10) 
// Y
(f => f(f))(fact => n => n <= 1 ? 1 : n * fact(fact)(n - 1))(10)
// Y'
const fix = (f) => f(f) 
const ygen = fix(fact2) 
ygen(10) 
// callee
(function(n) {n<=1?1:n*arguments.callee(n-1)})(10)

環(huán)境:Macbook pro(2.5 GHz Intel Core i7), node-5.0.0(V8:4.6.85.28) 結(jié)果:

fact x 18,604,101 ops/sec ±2.22% (88 runs sampled)
Y x 2,799,791 ops/sec ±1.03% (87 runs sampled)
Y' x 3,678,654 ops/sec ±1.57% (77 runs sampled)
callee x 2,632,864 ops/sec ±0.99% (81 runs sampled)

可見Y和callee的性能相差不多,因為需要臨時構(gòu)建函數(shù),所以跟直接的fact遞歸調(diào)用有差不多一個數(shù)量級的差異,將不定點函數(shù)算出后保存下來,大概會有一倍左右的性能提升。

看完上述內(nèi)容,你們掌握怎么在JavaScript中利用遞歸調(diào)用匿名函數(shù)的方法了嗎?如果還想學(xué)到更多技能或想了解更多相關(guān)內(nèi)容,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝各位的閱讀!

網(wǎng)站名稱:怎么在JavaScript中利用遞歸調(diào)用匿名函數(shù)
本文網(wǎng)址:http://jinyejixie.com/article0/ggsgio.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供移動網(wǎng)站建設(shè)企業(yè)網(wǎng)站制作、網(wǎng)站收錄、做網(wǎng)站、定制開發(fā)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

h5響應(yīng)式網(wǎng)站建設(shè)
玛多县| 尚义县| 武山县| 肇东市| 阳西县| 荆州市| 墨江| 新巴尔虎右旗| 修文县| 龙川县| 闻喜县| 清水县| 兴国县| 高碑店市| 丘北县| 蓝山县| 固原市| 九江市| 中江县| 和顺县| 洛宁县| 马山县| 城固县| 工布江达县| 泌阳县| 会昌县| 阳东县| 高陵县| 十堰市| 阜阳市| 榆树市| 体育| 台中市| 兰州市| 东山县| 丹阳市| 澜沧| 延边| 枣强县| 安乡县| 东乌珠穆沁旗|